Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metab Brain Dis ; 38(2): 409-418, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35670992

RESUMEN

To investigate the effect of rapamycin on mitochondrial dynamic balance in diabetic rats subjected to cerebral ischemia-reperfusion injury. Male Sprague Dawley (SD) rats (n = 78) were treated with high fat diet combined with streptozotocin injection to construct diabetic model in rats. Transient middle cerebral artery occlusion (MCAO) of 2 hours was induced and the brains were harvested after 1 and 3 days of reperfusion. Rapamycin was injected intraperitoneally for 3 days prior to and immediately after operation, once a day. The neurological function was assessed, infarct volumes were measured and HE staining as well as immunohistochemistry were performed. The protein of hippocampus was extracted and Western blotting were performed to detect the levels of mTOR, mitochondrial dynamin related proteins (DRP1, p-DRP1, OPA1), SIRT3, and Nix/BNIP3L. Diabetic hyperglycemia worsened the neurological function performance (p < 0.01), enlarged infarct size (p < 0.01) and increased ischemic neuronal cell death (p < 0.01). The increased damage was associated with elevations of p-mTOR, p-S6, and p-DRP1; and suppressions of SIRT3 and Nix/BNIP3L. Rapamycin ameliorated diabetes-enhanced ischemic brain damage and reversed the biomarker alterations caused by diabetes. High glucose activated mTOR pathway and caused mitochondrial dynamics toward fission. The protective effect of rapamycin against diabetes-enhanced ischemic brain damage was associated with inhibiting mTOR pathway, redressing mitochondrial dynamic imbalance, and elevating SIRT3 and Nix/BNIP3L expression.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Diabetes Mellitus Experimental , Daño por Reperfusión , Sirtuina 3 , Ratas , Masculino , Animales , Ratas Sprague-Dawley , Sirolimus/farmacología , Sirolimus/uso terapéutico , Dinámicas Mitocondriales , Diabetes Mellitus Experimental/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Sirtuina 3/metabolismo , Encéfalo/metabolismo , Lesiones Encefálicas/complicaciones , Isquemia Encefálica/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/complicaciones , Proteínas Reguladoras de la Apoptosis/metabolismo
2.
Int J Biol Macromol ; 200: 470-486, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35063486

RESUMEN

Oxidative stress is one of the major factors in induction of pancreatic ß-cell apoptosis and diabetes. Here, we investigated systematically the roles of a proteoglycan (namely, FYGL) from Ganoderma lucidum in protection and repair of pancreatic ß-cells against oxidative stress-induced injury and apoptosis on molecular, cellular and animal basis. FYGL in vitro had antioxidant activity in terms of scavenging of free radicals and reduction power. FYGL improved cells viability, insulin secretion, redox indicator expressions, and mitochondrial membrane potential in H2O2-induced INS-1 cell via regulating the activations of apoptosis-related mitogen-activated protein kinases (MAPK) and nuclear factor kappa B (NF-κB) pathways as well as the insulin secretion-related pathway. Thrillingly in vivo, FYGL repaired the injured pancreas, reduced the pancreatic ß-cells apoptosis, and improved insulin secretion because of regulating the balance of oxidation-reduction, therefore well managed blood glucose in db/db diabetic mice. These results demonstrated that FYGL is promising to be used as a novel natural remedy for protection of pancreatic ß-cells against oxidative stress in diabetes treatment.


Asunto(s)
Reishi
4.
Cell Discov ; 7(1): 105, 2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34725333

RESUMEN

Hepatitis B Virus (HBV) constitutes a major threat to global public health. Current understanding of HBV-host interaction is yet limited. Here, ribosome profiling, quantitative mass spectrometry and RNA-sequencing were conducted on a recently established HBV replication system, through which we identified multiomic differentially expressed genes (DEGs) that HBV orchestrated to remodel host proteostasis networks. Our multiomics interrogation revealed that HBV induced significant changes in both transcription and translation of 35 canonical genes including PPP1R15A, PGAM5 and SIRT6, as well as the expression of at least 15 non-canonical open reading frames (ncORFs) including ncPON2 and ncGRWD1, thus revealing an extra coding potential of human genome. Overexpression of these five genes but not the enzymatically deficient SIRT6 mutants suppressed HBV replication while knockdown of SIRT6 had opposite effect. Furthermore, the expression of SIRT6 was down-regulated in patients, cells or animal models of HBV infection. Mechanistic study further indicated that SIRT6 directly binds to mini-chromosome and deacetylates histone H3 lysine 9 (H3K9ac) and histone H3 lysine 56 (H3K56ac), and chemical activation of endogenous SIRT6 with MDL800 suppressed HBV infection in vitro and in vivo. By generating the first multiomics landscape of host-HBV interaction, our work is thus opening a new avenue to facilitate therapeutic development against HBV infection.

5.
J Hepatol ; 75(1): 74-85, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33621634

RESUMEN

BACKGROUND & AIMS: HBV remains a global threat to human health. It remains incompletely understood how HBV self-restricts in the host during most adult infections. Thus, we performed multi-omics analyses to systematically interrogate HBV-host interactions and the life cycle of HBV. METHODS: RNA-sequencing and ribosome profiling were conducted with cell-based models for HBV replication and gene expression. The novel translational events or products hereby detected were then characterized, and functionally assessed in both cell and mouse models. Moreover, quasi-species analyses of HBV subpopulations were conducted with patients at immune tolerance or activation phases, using next- or third-generation sequencing. RESULTS: We identified EnhI-SL (Enhancer I-stem loop) as a new cis element in the HBV genome; mutations disrupting EnhI-SL were found to elevate viral polymerase expression. Furthermore, while re-discovering HpZ/P', a previously under-explored isoform of HBV polymerase, we also identified HBxZ, a novel short isoform of HBX. Having confirmed their existence, we functionally characterized them as potent suppressors of HBV gene expression and genome replication. Mechanistically, HpZ/P' was found to repress HBV gene expression partially by interacting with, and sequestering SUPV3L1. Activation of the host immune system seemed to reduce the abundance of HBV mutants deficient in HpZ/P' or with disruptions in EnhI-SL. Finally, SRSF2, a host RNA spliceosome protein that is downregulated by HBV, was found to promote the splicing of viral pre-genomic RNA and HpZ/P' biogenesis. CONCLUSION: This study has identified multiple self-restricting HBV-host interactions. In particular, SRSF2-HpZ/P' appeared to constitute another negative feedback mechanism in the HBV life cycle. Targeting host splicing machinery might thus represent a strategy to intervene in HBV-host interactions. LAY SUMMARY: There remain many unknowns about the natural history of HBV infection in adults. Herein, we identified new HBV-host mechanisms which could be responsible for self-restricting infections. Targeting these mechanisms could be a promising strategy for the treatment of HBV infections.


Asunto(s)
Productos del Gen pol/metabolismo , Virus de la Hepatitis B , Hepatitis B Crónica , Interacciones Microbiota-Huesped/inmunología , Replicación Viral , Animales , Descubrimiento de Drogas , Genoma Viral/fisiología , Virus de la Hepatitis B/enzimología , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/inmunología , Hepatitis B Crónica/inmunología , Hepatitis B Crónica/virología , Humanos , Ratones , Regiones Promotoras Genéticas , Modificación Traduccional de las Proteínas , Autoempalme del ARN Ribosómico/metabolismo , ADN Polimerasa Dirigida por ARN/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Replicación Viral/genética , Replicación Viral/inmunología
6.
Oncol Lett ; 21(1): 34, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33262826

RESUMEN

The Traditional Chinese Medicine, Ganoderma lucidum, has been widely used for its immunity-related and anti-cancer effects. Fudan-Yueyang-Ganoderma lucidum (FYGL) is a proteoglycan, extracted from Ganoderma lucidum, that has shown safe anti-diabetic activity in vivo. The present study demonstrated that FYGL could selectively inhibit the viability of PANC-1 and BxPC-3 pancreatic cancer cells in a dose dependent manner, but not in Mia PaCa-2 pancreatic cancer cells and HepG2 liver cancer cells. In addition, FYGL could inhibit migration and colony formation, and promote apoptosis in PANC-1 cells, but not in Mia PaCa-2 cells. Further investigation into the underlying mechanism revealed that FYGL could inhibit the expression level of the Bcl-2 protein in PANC-1 cells, but not in Mia PaCa-2 cells, leading to an increase in reactive oxygen species (ROS) and a reduction in the mitochondrial membrane potential and cell apoptosis. The increased ROS also promoted the formation of autophagosomes, along with an increase in the microtubule-associated protein light chain 3 II/I ratio. However, FYGL halted autophagy by preventing the autophagosomes from entering the lysosomes. The inhibition of autophagy increased the accumulation of defective mitochondria, as well as the production of ROS. Taken together, the processes of ROS regulation and autophagy inhibition promoted apoptosis of PANC-1 cells through the caspase-3/cleaved caspase-3 cascade. These results indicated that FYGL could be potentially used as an anti-cancer agent in the treatment of pancreatic cancer.

7.
Biosci Biotechnol Biochem ; 84(12): 2491-2498, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32799731

RESUMEN

The pancreatic ß-cell death or dysfunction induced by oxidative stress plays an important effect on the development and progression of diabetes mellitus. Based on our previous findings, a natural proteoglycan extracted from Ganoderma Lucidum, named FYGL, could treat T2DM in vivo. In this study, we investigated the effects of FYGL on STZ-induced apoptosis of INS-1 cells and its underlying mechanisms. The results showed that FYGL significantly improved the cell viability and alleviated the apoptosis in STZ-treated INS-1 cells. Moreover, FYGL markedly decreased the intracellular ROS accumulation and NO release, and deactivated NF-κB, JNK, and p38 MAPK signaling pathways in STZ-induced INS-1 cells. Furthermore, FYGL improved the insulin secretion through inhibiting the activation of JNK and improving the expression of Pdx-1 in INS-1 cells damaged by STZ. These results indicated that FYGL could protect pancreatic ß-cells against apoptosis and dysfunction, and be used as a promising pharmacological medicine for diabetes management. Abbreviations: T2DM: type 2 diabetes mellitus; FYGL: Fudan-Yueyang G. lucidum; ROS: reactive oxygen species; NO: reactive oxygen species; NF-κB: nuclear factor kappa beta; JNK: c-jun N-terminal kinase; MAPK: mitogen-activated protein kinase; Pdx-1: Pancreatic duodenal homeobox 1.


Asunto(s)
Apoptosis/efectos de los fármacos , Citoprotección/efectos de los fármacos , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Proteoglicanos/farmacología , Reishi/química , Estreptozocina/farmacología , Animales , Transporte Biológico , Caspasa 3/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , FN-kappa B/metabolismo , Óxido Nítrico/metabolismo , Proteoglicanos/aislamiento & purificación , Proteoglicanos/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína X Asociada a bcl-2/metabolismo
8.
Biol Pharm Bull ; 43(10): 1542-1550, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32759548

RESUMEN

The steatosis and resultant oxidative stress and apoptosis play the important roles in the progression of nonalcoholic fatty liver disease (NAFLD), therefore, searching for the effective drugs against NAFLD has been a hot topic. In this work, we investigated a hyperbranched proteoglycan, namely FYGL extracted from Ganoderma lucidum, inhibiting the palmitic acid (PA)-induced steatosis in HepG2 hepatocytes. FYGL compose of hydrophilic polysaccharide and lipophilic protein. Both moieties conclude the reductive residues, such as glucose and cystine, making FYGL capable of anti-oxidation. Herein, we demonstrated that FYGL can significantly inhibit the steatosis, i.e., decrease the contents of triglycerides (TG) and total cholesterol (TC) in hepatic cells on the mechanism of increasing the phosphorylation of AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC), therefore inhibiting the expressions of sterol regulatory element-binding protein 1 (SREBP1) and fatty acid synthase (FASN), furthermore leading to the carnitine palmitoyl transferase-1 (CPT-1) expression increased against steatosis induced by fatty acids oxidation. Meanwhile, FYGL can alleviate reactive oxygen species (ROS) and malondialdehyde (MDA), promote superoxide dismutase (SOD) and total antioxidant capacity (T-AOC). Moreover, FYGL can prevent the cells from apoptosis by regulating the apoptosis-related protein expressions and alleviating oxidative stress. Notably, FYGL could significantly recover the cells activity and inhibit lactate dehydrogenase (LDH) release which were negatively induced by high concentration PA. These results demonstrated that FYGL has the potential functions to prevent the hepatocytes from lipid accumulation, oxidative stress and apoptosis, therefore against NAFLD.


Asunto(s)
Antioxidantes/farmacología , Polisacáridos Fúngicos/farmacología , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Proteoglicanos/farmacología , Reishi/química , Antioxidantes/uso terapéutico , Apoptosis/efectos de los fármacos , Polisacáridos Fúngicos/uso terapéutico , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/fisiología , Humanos , Lipogénesis/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/patología , Estrés Oxidativo/efectos de los fármacos , Ácido Palmítico/toxicidad , Proteoglicanos/uso terapéutico
9.
Biochem Biophys Res Commun ; 529(1): 43-50, 2020 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-32560817

RESUMEN

Neuroblastoma (NB) is a paediatric tumour that shows great biomolecule and clinical heterogeneity, and patients with NB often develop various neurological complications. Currently, the disease is mainly treated by surgery and still lacks specific therapeutic drugs; therefore, targets are urgently needed. Makorin ring finger protein 2 (MKRN2) is an E3 ligase whose effects on neuroblastoma have not been illustrated. shRNAs for MKRN2 have been designed, and MKRN2-knockdown human neuroblastoma SHSY5Y cells were established. MKRN2 knockdown promotes the proliferation and migration of SHSY5Y cells. Because MKRN2 is an E3 ligase, we performed a series of experiments, and Insulin-like growth factor-2 mRNA-binding protein 3 (IGF2BP3) was identified as a new substrate for MKRN2. IGF2BP3 is an RNA-binding protein that regulates the stability of many mRNAs, including CD44 and PDPN, and our study demonstrated that MKRN2 regulates the expression of CD44 and PDPN in an IGF2BP3-dependent manner. These results suggest that MKRN2 might be a potential therapeutic target for neuroblastoma.


Asunto(s)
Neuroblastoma/metabolismo , Neuroblastoma/patología , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Línea Celular Tumoral , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Técnicas de Silenciamiento del Gen , Humanos , Receptores de Hialuranos/genética , Técnicas In Vitro , Glicoproteínas de Membrana/genética , Neuroblastoma/genética , Estabilidad del ARN , ARN Interferente Pequeño/genética , Ribonucleoproteínas/antagonistas & inhibidores , Ribonucleoproteínas/genética , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
10.
Antiviral Res ; 143: 85-96, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28412182

RESUMEN

Enterovirus 71 (EV-A71) is a major cause of hand, foot, and mouth disease (HFMD). Infection with EV-A71 is more often associated with neurological complications in children and is responsible for the majority of fatalities, but currently there is no approved antiviral therapy for treatment. Here, we identified auraptene, formononetin, and yangonin as effective inhibitors of EV-A71 infection in the low-micromolar range from screening of a natural product library. Among them, formononetin and yangonin selectively inhibited EV-A71 while auraptene could inhibit viruses within the enterovirus species A. Time of addition studies showed that all the three inhibitors inhibit both attachment and postattachment step of entry. We found mutations conferring the resistance to these inhibitors in the VP1 and VP4 capsid proteins and confirmed the target residues using a reverse genetic approach. Interestingly, auraptene- and formononetin-resistant viruses exhibit cross-resistance to other inhibitors while yangonin-resistant virus still remains susceptible to auraptene and formononetin. Moreover, auraptene and formononetin, but not yangonin protected EV-A71 against thermal inactivation, indicating a direct stabilizing effect of both compounds on virion capsid conformation. Finally, neither biochanin A (an analog of formononetin) nor DL-Kavain (an analog of yangonin) exhibited anti-EV-A71 activity, suggesting the structural elements required for anti-EV-A71 activity. Taken together, these compounds could become potential lead compounds for anti-EV-A71 drug development and also serve as tool compounds for studying virus entry.


Asunto(s)
Productos Biológicos/antagonistas & inhibidores , Cumarinas/antagonistas & inhibidores , Enterovirus Humano A/efectos de los fármacos , Infecciones por Enterovirus/prevención & control , Ensayos Analíticos de Alto Rendimiento/métodos , Isoflavonas/antagonistas & inhibidores , Pironas/antagonistas & inhibidores , Animales , Productos Biológicos/administración & dosificación , Productos Biológicos/química , Proteínas de la Cápside/genética , Línea Celular , Chlorocebus aethiops , Cumarinas/administración & dosificación , Cumarinas/química , Cricetinae , Descubrimiento de Drogas , Farmacorresistencia Viral/genética , Enterovirus/efectos de los fármacos , Enterovirus Humano A/genética , Infecciones por Enterovirus/virología , Genisteína , Haplorrinos , Humanos , Isoflavonas/administración & dosificación , Isoflavonas/química , Mutación , Pironas/administración & dosificación , Pironas/química , Alineación de Secuencia , Células Vero , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
11.
Antimicrob Agents Chemother ; 60(9): 5357-67, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27353263

RESUMEN

Enterovirus 71 (EV-A71) is a major causative pathogen of hand, foot, and mouth disease (HFMD) epidemics. No antiviral therapies are currently available for treating EV-A71 infections. Here, we selected five reported enterovirus inhibitors (suramin, itraconazole [ITZ], GW5074, rupintrivir, and favipiravir) with different mechanisms of action to test their abilities to inhibit EV-A71 replication alone and in combination. All selected compounds have anti-EV-A71 activities in cell culture. The combination of rupintrivir and ITZ or favipiravir was synergistic, while the combination of rupintrivir and suramin was additive. The combination of suramin and favipiravir exerted a strong synergistic antiviral effect. The observed synergy was not due to cytotoxicity, as there was no significant increase in cytotoxicity when compounds were used in combinations at the tested doses. To investigate the potential inhibitory mechanism of favipiravir against enterovirus, two favipiravir-resistant EV-A71 variants were independently selected, and both of them carried an S121N mutation in the finger subdomain of the 3D polymerase. Reverse engineering of this 3D S121N mutation into an infectious clone of EV-A71 confirmed the resistant phenotype. Moreover, viruses resistant to ITZ or favipiravir remained susceptible to other inhibitors. Most notably, combined with ITZ, rupintrivir prevented the development of ITZ-resistant variants. Taken together, these results provide a rational basis for the design of combination regimens for use in the treatment of EV-A71 infections.


Asunto(s)
Antivirales/farmacología , Enterovirus Humano A/efectos de los fármacos , Isoxazoles/farmacología , Itraconazol/farmacología , Pirrolidinonas/farmacología , Suramina/farmacología , Proteínas no Estructurales Virales/genética , Amidas/farmacología , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular Tumoral , Chlorocebus aethiops , Combinación de Medicamentos , Farmacorresistencia Viral/genética , Sinergismo Farmacológico , Enterovirus Humano A/genética , Enterovirus Humano A/crecimiento & desarrollo , Humanos , Indoles/farmacología , Simulación del Acoplamiento Molecular , Mutación , Mioblastos/efectos de los fármacos , Mioblastos/virología , Fenoles/farmacología , Fenilalanina/análogos & derivados , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Pirazinas/farmacología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Valina/análogos & derivados , Células Vero , Proteínas no Estructurales Virales/antagonistas & inhibidores , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/efectos de los fármacos
12.
Antiviral Res ; 125: 1-7, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26585243

RESUMEN

There is currently no approved antiviral therapy for treatment of Ebola virus disease. To discover readily available approved drugs that can be rapidly repurposed for treatment of Ebola virus infections, we screened 1280 FDA-approved drugs and identified glycopeptide antibiotic teicoplanin inhibiting Ebola pseudovirus infection by blocking virus entry in the low micromolar range. Teicoplanin could be evaluated further and incorporated into ongoing clinical studies.


Asunto(s)
Antivirales/farmacología , Ebolavirus/efectos de los fármacos , Teicoplanina/farmacología , Animales , Chlorocebus aethiops , Evaluación Preclínica de Medicamentos/métodos , Ebolavirus/fisiología , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/prevención & control , Fiebre Hemorrágica Ebola/virología , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Células Vero , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
13.
J Virol ; 90(2): 741-52, 2016 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-26512078

RESUMEN

UNLABELLED: Enterovirus 71 (EV71), a positive-stranded RNA virus, is the major cause of hand, foot, and mouth disease (HFMD) in children, which can cause severe central nervous system disease and death. The capsids of EV71 consist of 60 copies of each of four viral structural proteins (VP1 to VP4), with VP1, VP2, and VP3 exposed on the surface and VP4 arranged internally. VP1 plays a central role in particle assembly and cell entry. To gain insight into the role of positively charged residues in VP1 function in these processes, a charged-to-alanine scanning analysis was performed using an infectious cDNA clone of EV71. Twenty-seven mutants containing single charged-to-alanine changes were tested. Sixteen of them were not viable, seven mutants were replication defective, and the remaining four mutants were replication competent. By selecting revertants, second-site mutations which could at least partially restore viral infectivity were identified within VP1 for four defective mutations and two lethal mutations. The resulting residue pairs represent a network of intra- and intermolecular interactions of the VP1 protein which could serve as a potential novel drug target. Interestingly, mutation K215A in the VP1 GH loop led to a significant increase in thermal stability, demonstrating that conditional thermostable mutants can be generated by altering the charge characteristics of VP1. Moreover, all mutants were sensitive to the EV71 entry inhibitor suramin, which binds to the virus particle via the negatively charged naphthalenetrisulfonic acid group, suggesting that single charged-to-alanine mutation is not sufficient for suramin resistance. Taken together, these data highlight the importance of positively charged residues in VP1 for production of infectious particles. IMPORTANCE: Infection with EV71 is more often associated with neurological complications in children and is responsible for the majority of fatalities. No licensed vaccines or antiviral therapies are currently available for the prevention or treatment of EV71 infection. Understanding the determinants of virion assembly and entry will facilitate vaccine development and drug discovery. Here, we identified 23 out of 27 positively charged residues in VP1 which impaired or blocked the production of infectious particles. The defect could be rescued by second-site mutations within the VP1 protein. Our findings highlight the importance of positively charged residues in VP1 during infectious particle production and reveal a potential strategy for blocking EV71 infections by inhibiting intra- or intermolecular interactions of the VP1 protein.


Asunto(s)
Proteínas de la Cápside/química , Proteínas de la Cápside/metabolismo , Enterovirus Humano A/fisiología , Electricidad Estática , Replicación Viral , Sustitución de Aminoácidos , Animales , Proteínas de la Cápside/genética , Chlorocebus aethiops , Enterovirus Humano A/genética , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Genética Inversa , Supresión Genética , Células Vero
14.
Virol J ; 12: 83, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-26036928

RESUMEN

BACKGROUND: In 2012 a large outbreak of hand, foot, and mouth disease (HFMD) widely spread over China, causing more than 2 million cases and 567 deaths. Our purpose was to characterize the major pathogens responsible for the 2012 HFMD outbreak and analyze the genetic characterization of the enterovirus 71 (EV71) strains in Shanghai; also, to analyze the dynamic patterns of neutralizing antibody (NAb) against EV71 and evaluate the diagnostic value of several methods for clinical detection of EV71. METHODS: Clinical samples including stool, serum and CSF were collected from 396 enrolled HFMD inpatients during the peak seasons in 2012. We analyzed the molecular epidemiology, clinical feature, and diagnostic tests of EV71 infection. RESULTS: EV71 was responsible for 60.35 % of HFMD inpatients and 88.46 % of severe cases. The circulating EV71 strains belonged to subgenogroup C4a. The nucleotide sequences of VP1 between severe cases and uncomplicated cases shared 99.2 ~ 100 % of homology. Among 218 cases with EV71 infection, 211 (96.79 %) serum samples showed NAb positive against EV71 and NAb titer reached higher level 3 days after disease onset. Of 92 cases with EV71-associated meningitis or encephalitis, 5 (5.43 %) of 92 had EV71 RNA detected in CSF samples. The blood anti-EV71 IgM assay showed a sensitivity of 93.30 % and a specificity of 50 %. CONCLUSIONS: EV71 C4a remained the predominant subgenotype circulating in Shanghai. The severity of the EV71 infection is not associated with the virulence determinants in VP1. RT-PCR together with IgM detection can enhance the early diagnosis of severe EV71-associated HFMD.


Asunto(s)
Brotes de Enfermedades , Enterovirus Humano A/aislamiento & purificación , Enfermedad de Boca, Mano y Pie/diagnóstico , Enfermedad de Boca, Mano y Pie/epidemiología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Líquido Cefalorraquídeo/virología , Niño , Preescolar , China/epidemiología , Análisis por Conglomerados , Diagnóstico Precoz , Enterovirus Humano A/clasificación , Enterovirus Humano A/genética , Heces/virología , Femenino , Enfermedad de Boca, Mano y Pie/patología , Humanos , Inmunoglobulina M/sangre , Lactante , Masculino , Epidemiología Molecular , Datos de Secuencia Molecular , Filogenia , ARN Viral/genética , Análisis de Secuencia de ADN , Homología de Secuencia , Suero/virología , Proteínas Estructurales Virales/genética
15.
Antimicrob Agents Chemother ; 59(5): 2654-65, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25691649

RESUMEN

There is currently no approved antiviral therapy for the prophylaxis or treatment of enterovirus infections, which remain a substantial threat to public health. To discover inhibitors that can be immediately repurposed for treatment of enterovirus infections, we developed a high-throughput screening assay that measures the cytopathic effect induced by enterovirus 71 (EV71) to screen an FDA-approved drug library. Itraconazole (ITZ), a triazole antifungal agent, was identified as an effective inhibitor of EV71 replication in the low-micromolar range (50% effective concentrations [EC50s], 1.15 µM). Besides EV71, the compound also inhibited other enteroviruses, including coxsackievirus A16, coxsackievirus B3, poliovirus 1, and enterovirus 68. Study of the mechanism of action by time-of-addition assay and transient-replicon assay revealed that ITZ targeted a step involved in RNA replication or polyprotein processing. We found that the mutations (G5213U and U5286C) conferring the resistance to the compound were in nonstructural protein 3A, and we confirmed the target amino acid substitutions (3A V51L and 3A V75A) using a reverse genetic approach. Interestingly, posaconazole, a new oral azole with a molecular structure similar to that of ITZ, also exhibited anti-EV71 activity. Moreover, ITZ-resistant viruses do not exhibit cross-resistance to posaconazole or the enviroxime-like compound GW5074, which also targets the 3A region, indicating that they may target a specific site(s) in viral genome. Although the protective activity of ITZ or posaconazole (alone or in combination with other antivirals) remains to be assessed in animal models, our findings may represent an opportunity to develop therapeutic interventions for enterovirus infection.


Asunto(s)
Antivirales/farmacología , Itraconazol/farmacología , Proteínas no Estructurales Virales/metabolismo , Línea Celular Tumoral , Farmacorresistencia Viral/genética , Enterovirus/efectos de los fármacos , Enterovirus/patogenicidad , Humanos , Transfección , Proteínas no Estructurales Virales/genética , Replicación Viral/efectos de los fármacos
16.
Guang Pu Xue Yu Guang Pu Fen Xi ; 29(11): 2939-42, 2009 Nov.
Artículo en Chino | MEDLINE | ID: mdl-20101958

RESUMEN

In order to investigate the feasibility of near infrared reflectance spectroscopy (NIRS) method for detecting if milk was adulterated with melamine or not, the present work has done the following research. Through adulterating different content of melamine into pure milk, altogether 160 samples were prepared. Using the Handheld Field Spec spectrometer spectral data of the samples were obtained, followed by different pretreatment methods to carry on processing the spectrum data, then establishing the mathematical model separately through comparison with different calibration models using different pretreatment methods, thus we got smoothing of moving average as the pretreatment method. One hundred twenty samples were taken out ran domly from 160 samples (all) to set model, with the remaining 40 samples as the validation samples. Two discriminant analysis models were developed by using partial least squares (PLS) method and least squares-support vector machine (LS-SVM) metho respectively, and then the other 40 samples were used to test the performance of the models. The coefficients of correlation (r) between the real values and the discriminant analysis models predicted ones were 0.917 4 (PLS) and 0.910 9 (LS-SVM). The root mean standard errors of prediction (RMSEP) were 0.030 4 (PLS) and 0.046 7 (LS-SVM). The results of this study indicated that NIRS method could provide rapid determination for melamine in milk.


Asunto(s)
Contaminación de Alimentos/análisis , Leche , Espectroscopía Infrarroja Corta , Triazinas/análisis , Animales , Análisis de los Mínimos Cuadrados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...