Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hortic Res ; 7(1): 173, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33328434

RESUMEN

MicroRNA396 (miR396) has been demonstrated to regulate flower development by targeting growth-regulating factors (GRFs) in annual species. However, its role in perennial grasses and its potential involvement in flowering time control remain unexplored. Here we report that overexpression of miR396 in a perennial species, creeping bentgrass (Agrostis stolonifera L.), alters flower development. Most significantly, transgenic (TG) plants bypass the vernalization requirement for flowering. Gene expression analysis reveals that miR396 is induced by long-day (LD) photoperiod and vernalization. Further study identifies VRN1, VRN2, and VRN3 homologs whose expression patterns in wild-type (WT) plants are similar to those observed in wheat and barley during transition from short-day (SD) to LD, and SD to cold conditions. However, compared to WT controls, TG plants overexpressing miR396 exhibit significantly enhanced VRN1 and VRN3 expression, but repressed VRN2 expression under SD to LD conditions without vernalization, which might be associated with modified expression of methyltransferase genes. Collectively, our results unveil a potentially novel mechanism by which miR396 suppresses the vernalization requirement for flowering which might be related to the epigenetic regulation of VRN genes and provide important new insight into critical roles of a miRNA in regulating vernalization-mediated transition from vegetative to reproductive growth in monocots.

2.
Methods Mol Biol ; 2124: 251-261, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32277458

RESUMEN

We describe a protocol for the establishment and preparation of creeping bentgrass (Agrostis stolonifera L.) cultivar "Penn A-4" embryonic calli, biolistic transformation, selection, and regeneration of transgenic plants. The embryonic callus is initiated from mature seeds, maintained by visual selection under the dissecting microscope and subjected to bombardment with plasmid DNA containing a bialaphos-resistance (bar) gene. PCR, Southern, and Northern blot analyses are used to confirm the transgene integration and expression.


Asunto(s)
Agrostis/embriología , Agrostis/genética , Biolística/métodos , ADN de Plantas/genética , Semillas/genética , Proliferación Celular , Expresión Génica , Plantas Modificadas Genéticamente , Regeneración , Transformación Genética , Transgenes
3.
Hortic Res ; 6: 48, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31069081

RESUMEN

The conserved microRNA396 (miR396) is involved in plant growth, development, and abiotic stress response in multiple plant species through regulating its targets, Growth Regulating Factor (GRF) transcription factor genes. However, the role of miR396 has not yet been characterized in perennial monocot species. In addition, the molecular mechanism of miR396-mediated abiotic stress response remains unclear. To elucidate the role of miR396 in perennial monocot species, we generated transgenic creeping bentgrass (Agrostis stolonifera) overexpressing Osa-miR396c, a rice miRNA396 gene. Transgenic plants exhibited altered development, including less shoot and root biomass, shorter internodes, smaller leaf area, fewer leaf veins, and epidermis cells per unit area than those of WT controls. In addition, transgenics showed enhanced salt tolerance associated with improved water retention, increased chlorophyll content, cell membrane integrity, and Na+ exclusion during high salinity exposure. Four potential targets of miR396 were identified in creeping bentgrass and up-regulated in response to salt stress. RNA-seq analysis indicates that miR396-mediated salt stress tolerance requires the coordination of stress-related functional proteins (antioxidant enzymes and Na+/H+ antiporter) and regulatory proteins (transcription factors and protein kinases). This study establishes a miR396-associated molecular pathway to connect the upstream regulatory and downstream functional elements, and provides insight into the miRNA-mediated regulatory networks.

4.
Plant Biotechnol J ; 17(1): 233-251, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29873883

RESUMEN

MicroRNA393 (miR393) has been implicated in plant growth, development and multiple stress responses in annual species such as Arabidopsis and rice. However, the role of miR393 in perennial grasses remains unexplored. Creeping bentgrass (Agrostis stolonifera L.) is an environmentally and economically important C3 cool-season perennial turfgrass. Understanding how miR393 functions in this representative turf species would allow the development of novel strategies in genetically engineering grass species for improved abiotic stress tolerance. We have generated and characterized transgenic creeping bentgrass plants overexpressing rice pri-miR393a (Osa-miR393a). We found that Osa-miR393a transgenics had fewer, but longer tillers, enhanced drought stress tolerance associated with reduced stomata density and denser cuticles, improved salt stress tolerance associated with increased uptake of potassium and enhanced heat stress tolerance associated with induced expression of small heat-shock protein in comparison with wild-type controls. We also identified two targets of miR393, AsAFB2 and AsTIR1, whose expression is repressed in transgenics. Taken together, our results revealed the distinctive roles of miR393/target module in plant development and stress responses between creeping bentgrass and other annual species, suggesting that miR393 would be a promising candidate for generating superior crop cultivars with enhanced multiple stress tolerance, thus contributing to agricultural productivity.


Asunto(s)
Agrostis/metabolismo , MicroARNs/genética , Agrostis/genética , Agrostis/crecimiento & desarrollo , Deshidratación , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Genes de Plantas/fisiología , Respuesta al Choque Térmico , MicroARNs/fisiología , Oryza/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo , Tolerancia a la Sal , Estrés Fisiológico
5.
Plant Physiol ; 176(4): 3062-3080, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29463771

RESUMEN

Protein kinases play fundamental roles in plant development and environmental stress responses. Here, we identified the STRESS INDUCED FACTOR (SIF) gene family, which encodes four leucine-rich repeat receptor-like protein kinases in Arabidopsis (Arabidopsis thaliana). The four genes, SIF1 to SIF4, are clustered in the genome and highly conserved, but they have temporally and spatially distinct expression patterns. We employed Arabidopsis SIF knockout mutants and overexpression transgenics to examine SIF involvement during plant pathogen defense. SIF genes are rapidly induced by biotic or abiotic stresses, and SIF proteins localize to the plasma membrane. Simultaneous knockout of SIF1 and SIF2 led to improved plant salt tolerance, whereas SIF2 overexpression enhanced PAMP-triggered immunity and prompted basal plant defenses, significantly improving pathogen resistance. Furthermore, SIF2 overexpression plants exhibited up-regulated expression of the defense-related genes WRKY53 and flg22-INDUCED RECEPTOR-LIKE KINASE1 as well as enhanced MPK3/MPK6 phosphorylation upon pathogen and elicitor treatments. The expression of the calcium signaling-related gene PHOSPHATE-INDUCED1 also was enhanced in the SIF2-overexpressing lines upon pathogen inoculation but repressed in the sif2 mutants. Bimolecular fluorescence complementation demonstrates that the BRI1-ASSOCIATED RECEPTOR KINASE1 protein is a coreceptor of the SIF2 kinase in the signal transduction pathway during pathogen invasion. These findings characterize a stress-responsive protein kinase family and illustrate how SIF2 modulates signal transduction for effective plant pathogenic defense.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Proteínas Quinasas/genética , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Resistencia a la Enfermedad/genética , Filogenia , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Proteínas Quinasas/clasificación , Proteínas Quinasas/metabolismo , Pseudomonas syringae/fisiología , Homología de Secuencia de Aminoácido , Transducción de Señal/genética , Estrés Fisiológico
6.
Plant Biotechnol J ; 15(4): 433-446, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27638479

RESUMEN

Flavodoxin (Fld) plays a pivotal role in photosynthetic microorganisms as an alternative electron carrier flavoprotein under adverse environmental conditions. Cyanobacterial Fld has been demonstrated to be able to substitute ferredoxin of higher plants in most electron transfer processes under stressful conditions. We have explored the potential of Fld for use in improving plant stress response in creeping bentgrass (Agrostis stolonifera L.). Overexpression of Fld altered plant growth and development. Most significantly, transgenic plants exhibited drastically enhanced performance under oxidative, drought and heat stress as well as nitrogen (N) starvation, which was associated with higher water retention and cell membrane integrity than wild-type controls, modified expression of heat-shock protein genes, production of more reduced thioredoxin, elevated N accumulation and total chlorophyll content as well as up-regulated expression of nitrite reductase and N transporter genes. Further analysis revealed that the expression of other stress-related genes was also impacted in Fld-expressing transgenics. Our data establish a key role of Fld in modulating plant growth and development and plant response to multiple sources of adverse environmental conditions in crop species. This demonstrates the feasibility of manipulating Fld in crop species for genetic engineering of plant stress tolerance.


Asunto(s)
Agrostis/metabolismo , Flavodoxina/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Agrostis/efectos de los fármacos , Agrostis/genética , Sequías , Flavodoxina/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Calor , Paraquat/toxicidad , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/efectos de los fármacos , Plantas Modificadas Genéticamente/genética
7.
Sci Rep ; 6: 28791, 2016 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-27350219

RESUMEN

Sulfur participates in many important mechanisms and pathways of plant development. The most common source of sulfur in soil -SO4(2-)- is absorbed into root tissue and distributed into aerial part through vasculature system, where it is reduced into sulfite and finally sulfide within the subcellular organs such as chloroplasts and mitochondria and used for cysteine and methionine biosynthesis. MicroRNAs are involved in many regulation pathways by repressing the expression of their target genes. MiR395 family in Arabidopsis thaliana has been reported to be an important regulator involved in sulfate transport and assimilation, and a high-affinity sulphate transporter and three ATP sulfurylases (ATPS) were the target genes of AthmiR395 (Arabidopsis thaliana miR395). We have cloned a miR395 gene from rice (Oryza sativa) and studied its function in plant nutritional response. Our results indicated that in rice, transcript level of OsamiR395 (Oryza sativa miR395) increased under sulfate deficiency conditions, and the two predicted target genes of miR395 were down-regulated under the same conditions. Overexpression of OsamiR395h in tobacco impaired its sulfate homeostasis, and sulfate distribution was also slightly impacted among leaves of different ages. One sulfate transporter (SULTR) gene NtaSULTR2 was identified to be the target of miR395 in Nicotiana tobacum, which belongs to low affinity sulfate transporter group. Both miR395 and NtaSULTR2 respond to sulfate starvation in tobacco.


Asunto(s)
MicroARNs/genética , Nicotiana/genética , Oryza/genética , ARN de Planta/genética , Sulfatos/metabolismo , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Secuencia de Bases , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Homeostasis , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Homología de Secuencia de Ácido Nucleico , Nicotiana/metabolismo
8.
Plant Physiol ; 169(1): 576-93, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26224802

RESUMEN

MicroRNA528 (miR528) is a conserved monocot-specific small RNA that has the potential of mediating multiple stress responses. So far, however, experimental functional studies of miR528 are lacking. Here, we report that overexpression of a rice (Oryza sativa) miR528 (Osa-miR528) in transgenic creeping bentgrass (Agrostis stolonifera) alters plant development and improves plant salt stress and nitrogen (N) deficiency tolerance. Morphologically, miR528-overexpressing transgenic plants display shortened internodes, increased tiller number, and upright growth. Improved salt stress resistance is associated with increased water retention, cell membrane integrity, chlorophyll content, capacity for maintaining potassium homeostasis, CATALASE activity, and reduced ASCORBIC ACID OXIDASE (AAO) activity; while enhanced tolerance to N deficiency is associated with increased biomass, total N accumulation and chlorophyll synthesis, nitrite reductase activity, and reduced AAO activity. In addition, AsAAO and COPPER ION BINDING PROTEIN1 are identified as two putative targets of miR528 in creeping bentgrass. Both of them respond to salinity and N starvation and are significantly down-regulated in miR528-overexpressing transgenics. Our data establish a key role that miR528 plays in modulating plant growth and development and in the plant response to salinity and N deficiency and indicate the potential of manipulating miR528 in improving plant abiotic stress resistance.


Asunto(s)
Agrostis/genética , Agrostis/fisiología , MicroARNs/metabolismo , Nitrógeno/deficiencia , Oryza/genética , Desarrollo de la Planta/genética , Salinidad , Tolerancia a la Sal/genética , Agrostis/efectos de los fármacos , Aldehído Oxidasa/metabolismo , Secuencia de Bases , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Clorofila/metabolismo , Sequías , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Homeostasis/efectos de los fármacos , Homeostasis/genética , MicroARNs/genética , Datos de Secuencia Molecular , Desarrollo de la Planta/efectos de los fármacos , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Potasio/metabolismo , Prolina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Tolerancia a la Sal/efectos de los fármacos , Sodio/metabolismo , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Agua
9.
Methods Mol Biol ; 913: 359-69, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22895772

RESUMEN

Plant vacuoles have multifaceted roles including turgor maintenance, cytosolic pH and ionic homeostasis, plant protection against environmental stress, detoxification, pigmentation, and cellular signaling. These roles are achieved through the coordinated activities of many proteins in the tonoplast (vacuolar membrane), of which the proton pumps and ion transporters have been modified for improved abiotic stress tolerance in transgenic plants. Here we describe a method to manipulate vacuolar H(+)-pyrophosphatase in turfgrass and evaluate the impact of the modified tonoplast on the phenotype, biochemistry, and physiology of the transgenics. Creeping bentgrass (Agrostis stolonifera L.) plants overexpressing an Arabidopsis vacuolar H(+)-pyrophosphatase AVP1 exhibited improved growth and enhanced salt tolerance, likely associated with increased photosynthesis, relative water content, proline production, and Na(+) uptake. These transgenic plants also had decreased solute leakage in the leaf tissues and increased concentrations of Na(+), K(+), Cl(-), and total phosphorus in the root tissues. Similar strategies can be employed to manipulate other tonoplast transporters and in other plant species to produce transgenic plants with improved performance under various abiotic stresses.


Asunto(s)
Agrostis/genética , Proteínas de Arabidopsis/genética , Pirofosfatasa Inorgánica/genética , Plantas Tolerantes a la Sal/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Orden Génico , Hojas de la Planta/química , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Plásmidos/genética , Tolerancia a la Sal/genética , Estrés Fisiológico , Transformación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA