Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
NPJ Digit Med ; 7(1): 122, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729977

RESUMEN

Sleep disturbances profoundly affect the quality of life in individuals with neurological disorders. Closed-loop deep brain stimulation (DBS) holds promise for alleviating sleep symptoms, however, this technique necessitates automated sleep stage decoding from intracranial signals. We leveraged overnight data from 121 patients with movement disorders (Parkinson's disease, Essential Tremor, Dystonia, Essential Tremor, Huntington's disease, and Tourette's syndrome) in whom synchronized polysomnograms and basal ganglia local field potentials were recorded, to develop a generalized, multi-class, sleep specific decoder - BGOOSE. This generalized model achieved 85% average accuracy across patients and across disease conditions, even in the presence of recordings from different basal ganglia targets. Furthermore, we also investigated the role of electrocorticography on decoding performances and proposed an optimal decoding map, which was shown to facilitate channel selection for optimal model performances. BGOOSE emerges as a powerful tool for generalized sleep decoding, offering exciting potentials for the precision stimulation delivery of DBS and better management of sleep disturbances in movement disorders.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38641368

RESUMEN

BACKGROUND: Rapid eye movement (REM) sleep behaviour disorder (RBD) is one of the most common sleep problems and represents a key prodromal marker in Parkinson's disease (PD). It remains unclear whether and how basal ganglia nuclei, structures that are directly involved in the pathology of PD, are implicated in the occurrence of RBD. METHOD: Here, in parallel with whole-night video polysomnography, we recorded local field potentials from two major basal ganglia structures, the globus pallidus internus and subthalamic nucleus, in two cohorts of patients with PD who had varied severity of RBD. Basal ganglia oscillatory patterns during RBD and REM sleep without atonia were analysed and compared with another age-matched cohort of patients with dystonia that served as controls. RESULTS: We found that beta power in both basal ganglia nuclei was specifically elevated during REM sleep without atonia in patients with PD, but not in dystonia. Basal ganglia beta power during REM sleep positively correlated with the extent of atonia loss, with beta elevation preceding the activation of chin electromyogram activities by ~200 ms. The connectivity between basal ganglia beta power and chin muscular activities during REM sleep was significantly correlated with the clinical severity of RBD in PD. CONCLUSIONS: These findings support that basal ganglia activities are associated with if not directly contribute to the occurrence of RBD in PD. Our study expands the understanding of the role basal ganglia played in RBD and may foster improved therapies for RBD by interrupting the basal ganglia-muscular communication during REM sleep in PD.

3.
NPJ Parkinsons Dis ; 10(1): 52, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38448431

RESUMEN

Subthalamic nucleus deep brain stimulation (STN-DBS) has the potential to delay Parkinson's disease (PD) progression. Whether oxidative stress participates in the neuroprotective effects of DBS and related signaling pathways remains unknown. To address this, we applied STN-DBS to mice and monkey models of PD and collected brain tissue to evaluate mitophagy, oxidative stress, and related pathway. To confirm findings in animal experiments, a cohort of PD patients was recruited and oxidative stress was evaluated in cerebrospinal fluid. When PD mice received STN stimulation, the mTOR pathway was suppressed, accompanied by elevated LC3 II expression, increased mitophagosomes, and a decrease in p62 expression. The increase in mitophagy and balance of mitochondrial fission/fusion dynamics in the substantia nigra caused a marked enhancement of the antioxidant enzymes superoxide dismutase and glutathione levels. Subsequently, fewer mitochondrial apoptogenic factors were released to the cytoplasm, which resulted in a suppression of caspase activation and reservation of dopaminergic neurons. While interfaced with an mTOR activator, oxidative stress was no longer regulated by STN-DBS, with no neuroprotective effect. Similar results to those found in the rodent experiments were obtained in monkeys treated with chronic STN stimulation. Moreover, antioxidant enzymes in PD patients were increased after the operation, however, there was no relation between changes in antioxidant enzymes and motor impairment. Collectively, our study found that STN-DBS was able to increase mitophagy via an mTOR-dependent pathway, and oxidative stress was suppressed due to removal of damaged mitochondria, which was attributed to the dopaminergic neuroprotection of STN-DBS in PD.

4.
J Clin Med ; 12(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38137630

RESUMEN

BACKGROUND: Previous studies have revealed the existence of electrode displacement during subthalamic nucleus deep brain stimulation (STN-DBS). However, the effect of electrode displacement on treatment outcomes is still unclear. In this study, we aimed to analyze the related factors of electrode displacement and assess postoperative electrode displacement in relation to the motor outcomes of STN-DBS. METHODS: A total of 88 patients aged 62.73 ± 6.35 years (55 males and 33 females) with Parkinson's disease undergoing STN-DBS, with comprehensive clinical characterization before and 1 month after surgery, were involved retrospectively and divided into a cross-incision group and cannula puncture group according to different dura opening methods. The electrode displacement, unilateral pneumocephalus volume percent (uPVP), and brain volume percent were estimated. RESULTS: A significant anterior and lateral electrode displacement was observed among all implanted electrodes after pneumocephalus absorption (p < 0.0001). The degree of electrode displacement was positively correlated with the uPVP (p = 0.005) and smaller in females than males (p = 0.0384). Electrode displacement was negatively correlated with motor improvement following STN-DBS in both on-medication and off-medication conditions (p < 0.05). Dural puncture reduced the uPVP (p < 0.0001) and postoperative electrode displacement (p = 0.0086) compared with dural incision. CONCLUSIONS: Electrode displacement had a negative impact on the therapeutic efficacy of STN-DBS. Opening the dura via cannula puncture is recommended to increase the accuracy of the lead implantation.

5.
Brain Sci ; 13(7)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37508947

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disease; it mainly occurs in the elderly population. Cuproptosis is a newly discovered form of regulated cell death involved in the progression of various diseases. Combining multiple GEO datasets, we analyzed the expression profile and immunity of cuproptosis-related genes (CRGs) in PD. Dysregulated CRGs and differential immune responses were identified between PD and non-PD substantia nigra. Two CRG clusters were defined in PD. Immune analysis suggested that CRG cluster 1 was characterized by a high immune response. The enrichment analysis showed that CRG cluster 1 was significantly enriched in immune activation pathways, such as the Notch pathway and the JAK-STAT pathway. KIAA0319, AGTR1, and SLC18A2 were selected as core genes based on the LASSO analysis. We built a nomogram that can predict the occurrence of PD based on the core genes. Further analysis found that the core genes were significantly correlated with tyrosine hydroxylase activity. This study systematically evaluated the relationship between cuproptosis and PD and established a predictive model for assessing the risk of cuproptosis subtypes and the outcome of PD patients. This study provides a new understanding of PD-related molecular mechanisms and provides new insights into the treatment of PD.

6.
Ther Adv Neurol Disord ; 16: 17562864231161163, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37200769

RESUMEN

Background: Subthalamic nucleus deep brain stimulation (STN-DBS) improves sleep qualities in Parkinson's disease (PD) patients; however, it remains elusive whether STN-DBS improves sleep by directly influencing the sleep circuit or alleviates other cardinal symptoms such as motor functions, other confounding factors including stimulation intensity may also involve. Studying the effect of microlesion effect (MLE) on sleep after STN-DBS electrode implantation may address this issue. Objective: To examine the influence of MLE on sleep quality and related factors in PD, as well as the effects of regional and lateral specific correlations with sleep outcomes after STN-DBS electrode implantation. Study Design: Case-control study; Level of evidence, 3. Data Sources and Methods: In 78 PD patients who underwent bilateral STN-DBS surgery in our center, we compared the sleep qualities, motor performances, anti-Parkinsonian drug dosage, and emotional conditions at preoperative baseline and postoperative 1-month follow-up. We determined the related factors of sleep outcomes and visualized the electrodes position, simulated the MLE-engendered volume of tissue lesioned (VTL), and investigated sleep-related sweet/sour spots and laterality in STN. Results: MLE improves sleep quality with Pittsburgh Sleep Quality Index (PSQI) by 13.36% and Parkinson's Disease Sleep Scale-2 (PDSS-2) by 17.95%. Motor (P = 0.014) and emotional (P = 0.001) improvements were both positively correlated with sleep improvements. However, MLE in STN associative subregions, as an independent factor, may cause sleep deterioration (r = 0.348, P = 0.002), and only the left STN showed significance (r = 0.327, P = 0.004). Sweet spot analysis also indicated part of the left STN associative subregion is the sour spot indicative of sleep deterioration. Conclusion: The MLE of STN-DBS can overall improve sleep quality in PD patients, with a positive correlation between motor and emotional improvements. However, independent of all other factors, the MLE in the STN associative subregion, particularly the left side, may cause sleep deterioration.

7.
Neural Regen Res ; 18(4): 901-907, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36204861

RESUMEN

There are many documented sex differences in the clinical course, symptom expression profile, and treatment response of Parkinson's disease, creating additional challenges for patient management. Although subthalamic nucleus deep brain stimulation is an established therapy for Parkinson's disease, the effects of sex on treatment outcome are still unclear. The aim of this retrospective observational study, was to examine sex differences in motor symptoms, non-motor symptoms, and quality of life after subthalamic nucleus deep brain stimulation. Outcome measures were evaluated at 1 and 12 months post-operation in 90 patients with Parkinson's disease undergoing subthalamic nucleus deep brain stimulation aged 63.00 ± 8.01 years (55 men and 35 women). Outcomes of clinical evaluations were compared between sexes via a Student's t-test and within sex via a paired-sample t-test, and generalized linear models were established to identify factors associated with treatment efficacy and intensity for each sex. We found that subthalamic nucleus deep brain stimulation could improve motor symptoms in men but not women in the on-medication condition at 1 and 12 months post-operation. Restless legs syndrome was alleviated to a greater extent in men than in women. Women demonstrated poorer quality of life at baseline and achieved less improvement of quality of life than men after subthalamic nucleus deep brain stimulation. Furthermore, Hoehn-Yahr stage was positively correlated with the treatment response in men, while levodopa equivalent dose at 12 months post-operation was negatively correlated with motor improvement in women. In conclusion, women received less benefit from subthalamic nucleus deep brain stimulation than men in terms of motor symptoms, non-motor symptoms, and quality of life. We found sex-specific factors, i.e., Hoehn-Yahr stage and levodopa equivalent dose, that were related to motor improvements. These findings may help to guide subthalamic nucleus deep brain stimulation patient selection, prognosis, and stimulation programming for optimal therapeutic efficacy in Parkinson's disease.

8.
Transl Neurodegener ; 11(1): 51, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36471370

RESUMEN

BACKGROUND: Deep brain stimulation (DBS) of the nucleus basalis of Meynert (NBM) has shown potential for the treatment of mild-to-moderate Alzheimer's disease (AD). However, there is little evidence of whether NBM-DBS can improve cognitive functioning in patients with advanced AD. In addition, the mechanisms underlying the modulation of brain networks remain unclear. This study was aimed to assess the cognitive function and the resting-state connectivity following NBM-DBS in patients with advanced AD. METHODS: Eight patients with advanced AD underwent bilateral NBM-DBS and were followed up for 12 months. Clinical outcomes were assessed by neuropsychological examinations using the Mini-Mental State Examination (MMSE) and Alzheimer's Disease Assessment Scale. Resting-state functional magnetic resonance imaging and positron emission tomography data were also collected. RESULTS: The cognitive functioning of AD patients did not change from baseline to the 12-month follow-up. Interestingly, the MMSE score indicated clinical efficacy at 1 month of follow-up. At this time point, the connectivity between the hippocampal network and frontoparietal network tended to increase in the DBS-on state compared to the DBS-off state. Additionally, the increased functional connectivity between the parahippocampal gyrus (PHG) and the parietal cortex was associated with cognitive improvement. Further dynamic functional network analysis showed that NBM-DBS increased the proportion of the PHG-related connections, which was related to improved cognitive performance. CONCLUSION: The results indicated that NBM-DBS improves short-term cognitive performance in patients with advanced AD, which may be related to the modulation of multi-network connectivity patterns, and the hippocampus plays an important role within these networks. TRIAL REGISTRATION: ChiCTR, ChiCTR1900022324. Registered 5 April 2019-Prospective registration. https://www.chictr.org.cn/showproj.aspx?proj=37712.


Asunto(s)
Enfermedad de Alzheimer , Estimulación Encefálica Profunda , Humanos , Núcleo Basal de Meynert/diagnóstico por imagen , Núcleo Basal de Meynert/fisiología , Estimulación Encefálica Profunda/métodos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/terapia , Estudios Prospectivos , Tomografía Computarizada por Rayos X , Hipocampo/diagnóstico por imagen
9.
CNS Neurosci Ther ; 28(12): 2163-2171, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36069345

RESUMEN

BACKGROUND: Previous studies have reported the effects of age and disease duration on the efficacy of subthalamic nuclei deep brain stimulation (STN-DBS) of Parkinson's disease (PD) patients. However, available data involving these issues are not consistent. In particular, the effect of age and disease duration on the initial efficacy of STN-DBS has not been established. METHODS: A total of 51 patients with PD treated with bilateral STN-DBS were involved in the present study. They received clinical symptom evaluation during the preoperative, initial, and chronic stages of surgery. The correlations between age when undergoing surgery/age at disease onset/disease duration and outcomes of STN-DBS were measured. RESULTS: The preoperative levodopa response was negatively associated with age. During the initial stage, the age when undergoing surgery and age at disease onset were negatively correlated with the effect on bradykinesia, with better symptom control of general symptoms in long-term disease patients. Similarly, patients with an early time of surgery and disease onset and long-term disease duration showed better control of bradykinesia and axial symptoms at the chronic stage. Furthermore, a long-term disease duration and early disease onset benefited from an increase of therapeutic efficacy in general, rigid, and axial symptoms with STN-DBS after a long period. Nevertheless, patients with late disease onset achieved a better relief of stigma. CONCLUSION: Age and disease durations played a unique role in controlling the symptoms of PD patients treated with STN-DBS. These results may contribute to patient selection and adjustments of expectations of surgery, based on the age, disease duration, and different symptoms.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Estimulación Encefálica Profunda/métodos , Hipocinesia , Núcleo Subtalámico/fisiología , Levodopa/uso terapéutico , Resultado del Tratamiento
10.
CNS Neurosci Ther ; 28(5): 667-676, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35049150

RESUMEN

AIM: Subthalamic nucleus deep brain stimulation (STN-DBS) has been reported to be effective in treating motor symptoms in Parkinson's disease (PD), which may be attributed to changes in the brain network. However, the association between brain morphology and initial STN-DBS efficacy, as well as the performance of prediction using neuroimaging, has not been well illustrated. Therefore, we aim to investigate these issues. METHODS: In the present study, 94 PD patients underwent bilateral STN-DBS, and the initial stimulation efficacy was evaluated. Brain morphology was examined by magnetic resonance imaging (MRI). The volume of tissue activated in the motor STN was measured with MRI and computed tomography. The prediction of stimulation efficacy was achieved with a support vector machine, using brain morphology and other features, after feature selection and hyperparameter optimization. RESULTS: A higher stimulation efficacy was correlated with a thicker right precentral cortex. No association with subcortical gray or white matter volumes was observed. These morphological features could estimate the individual stimulation response with an r value of 0.5678, an R2 of 0.3224, and an average error of 11.4%. The permutation test suggested these predictions were not based on chance. CONCLUSION: Our results indicate that changes in morphology are associated with the initial stimulation motor response and could be used to predict individual initial stimulation-related motor responses.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Sustancia Blanca , Estimulación Encefálica Profunda/métodos , Humanos , Imagen por Resonancia Magnética , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/diagnóstico por imagen , Núcleo Subtalámico/fisiología , Sustancia Blanca/patología
12.
Sci Rep ; 11(1): 20724, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34671073

RESUMEN

Neuroscientific studies on the function of the basal ganglia often examine the behavioral performance of patients with movement disorders, such as Parkinson's disease (PD) and dystonia (DT), while simultaneously examining the underlying electrophysiological activity during deep brain stimulation surgery. Nevertheless, to date, there have been no studies comparing the cognitive performance of PD and DT patients during surgery. In this study, we assessed the memory function of PD and DT patients with the Montreal Cognitive Assessment (MoCA) and the Mini-Mental State Examination (MMSE). We also tested their cognitive performance during the surgery using a continuous recognition memory test. The results of the MoCA and MMSE failed to reveal significant differences between the PD and DT patients. Additionally, no significant difference was detected by the intraoperative memory test between the PD and DT patients. The intraoperative memory test scores were highly correlated with the MMSE scores and MoCA scores. Our data suggest that DT patients perform similarly to PD patients in cognitive tests during surgery, and intraoperative memory tests can be used as a quick memory assessment tool during surgery.


Asunto(s)
Cognición/fisiología , Distonía/fisiopatología , Memoria/fisiología , Enfermedad de Parkinson/fisiopatología , Femenino , Humanos , Masculino , Pruebas de Estado Mental y Demencia , Persona de Mediana Edad , Pruebas Neuropsicológicas
13.
Front Neurol ; 12: 683532, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630273

RESUMEN

Background: The successful application of subthalamic nucleus (STN) deep brain stimulation (DBS) surgery relies mostly on optimal lead placement, whereas the major challenge is how to precisely localize STN. Microstimulation, which can induce differentiating inhibitory responses between STN and substantia nigra pars reticulata (SNr) near the ventral border of STN, has indicated a great potential of breaking through this barrier. Objective: This study aims to investigate the feasibility of localizing the boundary between STN and SNr (SSB) using microstimulation and promote better lead placement. Methods: We recorded neurophysiological data from 41 patients undergoing STN-DBS surgery with microstimulation in our hospital. Trajectories with typical STN signal were included. Microstimulation was applied near the bottom of STN to determine SSB, which was validated by the imaging reconstruction of DBS leads. Results: In most trajectories with microstimulation (84.4%), neuronal firing in STN could not be inhibited by microstimulation, whereas in SNr long inhibition was observed following microstimulation. The success rate of localizing SSB was significantly higher in trajectories with microstimulation than those without. Moreover, results from imaging reconstruction and intraoperative neurological assessments demonstrated better lead location and higher therapeutic effectiveness in trajectories with microstimulation and accurately identified SSB. Conclusion: Microstimulation on microelectrode recording is an effective approach to localize the SSB. Our data provide clinical evidence that microstimulation can be routinely employed to achieve better lead placement.

14.
Chin Med J (Engl) ; 134(3): 326-333, 2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33410631

RESUMEN

BACKGROUND: Anterior thalamic nuclei (ATN) deep brain stimulation (DBS) is an effective method of controlling epilepsy, especially temporal lobe epilepsy. Mossy fiber sprouting (MFS) plays an indispensable role in the pathogenesis and progression of epilepsy, but the effect of ATN-DBS on MFS in the chronic stage of epilepsy and the potential underlying mechanisms are unknown. This study aimed to investigate the effect of ATN-DBS on MFS, as well as potential signaling pathways by a kainic acid (KA)-induced epileptic model. METHODS: Twenty-four rhesus monkeys were randomly assigned to control, epilepsy (EP), EP-sham-DBS, and EP-DBS groups. KA was injected to establish the chronic epileptic model. The left ATN was implanted with a DBS lead and stimulated for 8 weeks. Enzyme-linked immunosorbent assay, Western blotting, and immunofluorescence staining were used to evaluate MFS and levels of potential molecular mediators in the hippocampus. One-way analysis of variance, followed by the Tukey post hoc correction, was used to analyze the statistical significance of differences among multiple groups. RESULTS: ATN-DBS is found to significantly reduce seizure frequency in the chronic stage of epilepsy. The number of ectopic granule cells was reduced in monkeys that received ATN stimulation (P < 0.0001). Levels of 3',5'-cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) in the hippocampus, together with Akt phosphorylation, were noticeably reduced in monkeys that received ATN stimulation (P = 0.0030 and P = 0.0001, respectively). ATN-DBS also significantly reduced MFS scores in the hippocampal dentate gyrus and CA3 sub-regions (all P < 0.0001). CONCLUSION: ATN-DBS is shown to down-regulate the cAMP/PKA signaling pathway and Akt phosphorylation and to reduce the number of ectopic granule cells, which may be associated with the reduced MFS in chronic epilepsy. The study provides further insights into the mechanism by which ATN-DBS reduces epileptic seizures.


Asunto(s)
Núcleos Talámicos Anteriores , Estimulación Encefálica Profunda , Epilepsia del Lóbulo Temporal , Epilepsia , Adenosina Monofosfato , Proteínas Quinasas Dependientes de AMP Cíclico , Epilepsia/terapia , Epilepsia del Lóbulo Temporal/terapia , Hipocampo , Humanos , Fibras Musgosas del Hipocampo , Transducción de Señal
15.
CNS Neurosci Ther ; 27(3): 341-351, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33085171

RESUMEN

AIMS: Deep brain stimulation of the anterior nuclei of the thalamus (ANT-DBS) is effective in temporal lobe epilepsy (TLE). Previous studies have shown that the basal ganglia are involved in seizure propagation in TLE, but the effects of ANT-DBS on the basal ganglia have not been clarified. METHODS: ANT-DBS was applied to monkeys with kainic acid-induced TLE using a robot-assisted system. Behavior was monitored continuously. Immunofluorescence analysis and Western blotting were used to estimate protein expression levels in the basal ganglia and the effects of ANT stimulation. RESULTS: The seizure frequency decreased after ANT-DBS. D1 and D2 receptor levels in the putamen and caudate were significantly higher in the ANT-DBS group than in the epilepsy (EP) model. Neuronal loss and apoptosis were less severe in the ANT-DBS group. Glutamate receptor 1 (GluR1) in the nucleus accumbens (NAc) shell and globus pallidus internus (GPi) increased in the EP group but decreased after ANT-DBS. γ-Aminobutyric acid receptor A (GABAA -R) decreased and glutamate decarboxylase 67 (GAD67) increased in the GPi of the EP group, whereas the reverse tendencies were observed after ANT-DBS. CONCLUSION: ANT-DBS exerts neuroprotective effects on the caudate and putamen, enhances D1 and D2 receptor expression, and downregulates GPi overactivation, which enhanced the antiepileptic function of the basal ganglia.


Asunto(s)
Núcleos Talámicos Anteriores/metabolismo , Ganglios Basales/metabolismo , Estimulación Encefálica Profunda/métodos , Epilepsia del Lóbulo Temporal/metabolismo , Epilepsia del Lóbulo Temporal/terapia , Neuroprotección/fisiología , Animales , Electroencefalografía/métodos , Haplorrinos , Macaca mulatta , Masculino , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Técnicas Estereotáxicas
16.
Brain Behav Immun ; 90: 16-25, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32726685

RESUMEN

Subthalamic nucleus deep brain stimulation (STN-DBS) is widely used to treat patients with Parkinson's disease (PD), and recent studies have shown that it is more beneficial for early stages, suggesting a potential neuroprotective effect. And the neuroinflammation plays an indispensable role in progress of PD. However, the underlying mechanisms are not well understood. The aim of this study was to investigate the effect of STN-DBS on neuroinflammation and the potential pathway. To address this question, we established a rat PD model by unilateral 6-hydroxydopamine injection into the left striatum and implanted stimulation leads into the ipsilateral STN to deliver electrical stimulation for a week. The neuroprotective effects of STN-DBS were examined by molecular biology techniques, including western blotting, immunohistochemistry and so on. We found that motor deficits were alleviated by STN-DBS, with increased survival of dopaminergic neurons in the substantia nigra (SN). Furthermore, STN-DBS decreased Fractalkine (CX3CL1) and its receptor (CX3CR1) expression. Meanwhile, the suppressed microglia activation and nuclear factor-κB expression, decrease in the levels of pro-inflammatory cytokine interleukin (IL)-1ß and IL-6 and increase in anti-inflammatory cytokine IL-4, downregulated IL-1 receptor, extracellular signal-regulated kinase (ERK) and cleaved-caspase3 were also observed in SN of PD models received STN-DBS. In conclusion, we observed a significant association between the suppressed neuroinflammation and STN-DBS, which may be attributed to CX3CL1/CX3CR1 signaling. These results provide novel insight into the mechanistic basis of STN-DBS therapy for PD.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Animales , Quimiocina CX3CL1 , Humanos , Enfermedad de Parkinson/terapia , Ratas , Sustancia Negra
17.
CNS Neurosci Ther ; 26(7): 711-719, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32198848

RESUMEN

BACKGROUND: Up to 90% of patients with Parkinson's disease (PD) eventually develop the speech and voice disorder referred to as hypokinetic dysarthria (HD). However, the brain morphological changes associated with HD have not been investigated. Moreover, no reliable model for predicting the severity of HD based on neuroimaging has yet been developed. METHODS: A total of 134 PD patients were included in this study and divided into a training set and a test set. All participants underwent a structural magnetic resonance imaging (MRI) scan and neuropsychological evaluation. Individual cortical thickness, subcortical structure, and white matter volume were extracted, and their association with HD severity was analyzed. After feature selection, a machine-learning model was established using a support vector machine in the training set. The severity of HD was then predicted in the test set. RESULTS: Atrophy of the right precentral cortex and the right fusiform gyrus was significantly associated with HD. No association was found between HD and volume of white matter or subcortical structures. Favorable and optimal performance of machine learning on HD severity prediction was achieved using feature selection, giving a correlation coefficient (r) of .7516 and a coefficient of determination (R2 ) of .5649 (P < .001). CONCLUSION: The brain morphological changes were associated with HD. Excellent prediction of the severity of HD was achieved using machine learning based on neuroimaging.


Asunto(s)
Encéfalo/diagnóstico por imagen , Disartria/diagnóstico por imagen , Hipocinesia/diagnóstico por imagen , Aprendizaje Automático , Enfermedad de Parkinson/diagnóstico por imagen , Índice de Severidad de la Enfermedad , Anciano , Disartria/epidemiología , Femenino , Humanos , Hipocinesia/epidemiología , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/epidemiología , Valor Predictivo de las Pruebas , Estudios Retrospectivos
18.
J Neurol Sci ; 411: 116721, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32058183

RESUMEN

In Parkinson's disease (PD), the thalamus plays an important role in pathogenesis and disease symptoms; however, the morphological changes in thalamic subnuclei have not been clearly investigated. And there are still many challenges in individual PD diagnosis, especially clinical condition evaluations. Structural magnetic resonance imaging (MRI) was performed on 131 PD patients and 69 healthy controls (HC), and the volumes of 25 thalamic subnuclei were evaluated by FreeSurfer and a newly developed thalamus segment algorithm. Then, the individual PD diagnosis and clinical condition prediction were conducted on support vector machines (SVM) classification or regression. The bilateral thalami were enlarged; the volumes of 21 of 25 left thalamic subnuclei and 20 of 25 right thalamic subnuclei were increased, accompanied by 2 left nuclei atrophy. An accuracy of 95% with sensitivity of 97.44%, and specificity of 90.48% was achieved in PD diagnosis. United Parkinson's disease Rating Scale (UPDRS) III, limb bradykinesia, and axial akinetic symptoms score prediction were obtained with Pearson correlation coefficient of 0.5497, 0.5382, and 0.5911, respectively; however, the results of tremor, rigidity, and speech prediction were limited. Finally, accuracies of 76.92% were achieved in the UPDRS III improvement prediction. These findings confirmed that numerous left and right thalamic subnuclei were enlarged, accompanied by a few atrophies. The individual PD diagnosis, symptom, and clinical improvement prediction could be achieved based on morphology of thalamic subnuclei via machine learning.


Asunto(s)
Enfermedad de Parkinson , Humanos , Hipocinesia , Aprendizaje Automático , Enfermedad de Parkinson/diagnóstico por imagen , Tálamo/diagnóstico por imagen , Temblor
19.
Brain Res Bull ; 149: 32-41, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30954527

RESUMEN

BACKGROUND: Mesial temporal lobe epilepsy (mTLE) is the most common type of refractory epilepsy, and non-human primate (NHP) models are important to investigate its mechanism and therapy. However, previous mTLE-NHP models have some defects. METHODS: Thirteen rhesus monkeys were randomly assigned to a control group and epilepsy group. Kainic acid (KA) was injected into the left hippocampus and amygdala assisted by a neurosurgical robot system, while the control group received normal saline injection. Stereoelectroencephalography (SEEG) electrodes were implanted into the hippocampus in the acute and chronic stages to monitor epileptic discharges, with continuous behavior monitoring. The changes in hippocampal volume were evaluated by magnetic resonance imaging. Transmission electron microscopy, western blotting and immunofluorescence were performed 3 months after injection to investigate neuronal ultrastructural alteration, blood-brain barrier (BBB) disruption, neuronal loss and gliosis in multiple brain regions. RESULTS: In the epilepsy group, status epilepticus (SE) and spontaneously recurrent seizures (SRSs) were detected in the acute and chronic stages via video monitoring. SEEG confirmed that the epileptic zone was focused on the injection area. The hippocampal volume was significantly decreased in the chronic stage compared with baseline. Neuronal ultrastructure and BBB integrity deteriorated in the hippocampus and amygdala of epileptic monkeys. The obvious neuronal loss and gliosis in the CA1-CA4 hippocampal regions were confirmed by western blotting and immunofluorescence; however, the temporal cortex was not affected. Moreover, the neuronal ultrastructural deterioration was detected in other limbic system regions (orbitofrontal cortex and posterior cingulate cortex). CONCLUSION: A novel mTLE-NHP model was induced by one-time intra-hippocampal and intra-amygdalar KA injection, with detectable SE and SRS. Severe hippocampal atrophy, neuronal ultrastructural damage, BBB disruption, neuronal loss and gliosis were confirmed in this model, with widespread limbic system damage, which are similar to the pathology of mTLE patients.


Asunto(s)
Epilepsia del Lóbulo Temporal/patología , Procedimientos Quirúrgicos Robotizados/métodos , Lóbulo Temporal/patología , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/fisiología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Electroencefalografía/métodos , Epilepsia/fisiopatología , Lateralidad Funcional , Giro del Cíngulo/patología , Hipocampo/efectos de los fármacos , Hipocampo/patología , Ácido Kaínico/farmacología , Macaca mulatta , Imagen por Resonancia Magnética/métodos , Masculino , Neuronas/patología , Procedimientos Neuroquirúrgicos/métodos , Robótica/métodos , Convulsiones/patología , Lóbulo Temporal/efectos de los fármacos
20.
Neuromodulation ; 22(4): 441-450, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31012530

RESUMEN

OBJECTIVES: Deep brain stimulation (DBS) and stereo-electroencephalography (SEEG) electrode implantation are the most important and frequent manipulations in nonhuman primates (NHP) neuromodulation research. However, traditional methods tend to be arduous and inaccurate. MATERIALS AND METHODS: Twelve adult male rhesus monkeys were selected for the study, with six subthalamic nucleus (STN) DBS, six anterior nucleus of the thalamus (ANT) DBS and six hippocampus-SEEG (Hippo-SEEG) electrodes implantation. Mean Euclidean errors of entrance and the target were calculated by postoperative image fusion, and the correlation between entrance and target error, as well as the differences among the various manipulations, were analyzed. The accuracy of target was further confirmed by gross anatomy examination. Moreover, the time consumption was recorded. RESULTS: The mean (±SD) Euclidean errors of the target point and entry point of the three manipulations were STN-DBS: 1.05 ± 0.54 mm and 0.52 ± 0.17 mm; ANT-DBS: 1.12 ± 0.74 mm and 0.58 ± 0.24 mm; and Hippo-SEEG: 2.68 ± 1.03 mm and 1.47 ± 0.63 mm. Significant differences were observed in both target and entry point errors between the DBS and Hippo-SEEG groups, with superior accuracy in the DBS group. The entrance errors had a significantly positive correlation with the target errors in the STN-DBS and Hippo-SEEG groups. Moreover, the time consumption in robotic surgery was much shorter than that in the traditional method, without any severe complications. CONCLUSION: The application of robot-assisted lead implantation in NHP neuromodulation research is feasible, accurate, safe, and efficient, and can prospectively be beneficial to neurological studies.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Electrodos Implantados , Electroencefalografía/métodos , Procedimientos Quirúrgicos Robotizados/métodos , Animales , Estimulación Encefálica Profunda/instrumentación , Estimulación Encefálica Profunda/normas , Electrodos Implantados/normas , Electroencefalografía/instrumentación , Electroencefalografía/normas , Estudios de Factibilidad , Macaca mulatta , Masculino , Estudios Prospectivos , Procedimientos Quirúrgicos Robotizados/instrumentación , Procedimientos Quirúrgicos Robotizados/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...