Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(24): 29341-29351, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37294863

RESUMEN

Polythiophenes (PTs) are promising electron donors in organic solar cells (OSCs) due to their simple structures and excellent synthetic scalability. Benefiting from the rational molecular design, the power conversion efficiency (PCE) of PT solar cells has been greatly improved. Herein, five batches of the champion PT (P5TCN-F25) with molecular weights ranging from 30 to 87 kg mol-1 were prepared, and the effect of the molecular weight on the blend film morphology and photovoltaic performance of PT solar cells was systematically investigated. The results showed that the PCEs of the devices improved first and then maintained a high value with the increase of molecular weight, and the highest PCE of 16.7% in binary PT solar cells was obtained. Further characterizations revealed that the promotion in photovoltaic performance mainly comes from finer phase separation structures and more compact molecular packing in the blend film. The best device stabilities were also achieved by polymers with high molecular weights. Overall, this study highlights the importance of optimizing the molecular weight for PTs and offers directions to further improve the PCE of PT solar cells.

2.
Chem Commun (Camb) ; 58(62): 8686-8689, 2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35833246

RESUMEN

BNTT2F, an electron acceptor featuring a B-N covalent bond and singlet-triplet gap as low as 0.20 eV via the multiple resonance effect, is developed for organic solar cells. The optimized device based on BNTT2F offered an efficiency of 8.3%, suggesting the great prospect of B-N covalent bond-containing π-conjugated molecules for photovoltaics.

3.
Angew Chem Int Ed Engl ; 60(16): 8813-8817, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33682269

RESUMEN

High-efficiency organic solar cells (OSCs) largely rely on polymer donors. Herein, we report a new building block BNT and a relevant polymer PBNT-BDD featuring B-N covalent bond for application in OSCs. The BNT unit is synthesized in only 3 steps, leading to the facile synthesis of PBNT-BDD. When blended with a nonfullerene acceptor Y6-BO, PBNT-BDD afforded a power conversion efficiency (PCE) of 16.1 % in an OSC, comparable to the benzo[1,2-b:4,5-b']dithiophene (BDT)-based counterpart. The nonradiative recombination energy loss of 0.19 eV was afforded by PBNT-BDD. PBNT-BDD also exhibited weak crystallinity and appropriate miscibility with Y6-BO, benefitting of morphological stability. The singlet-triplet gap (ΔEST ) of PBNT-BDD is as low as 0.15 eV, which is much lower than those of common organic semiconductors (≥0.6 eV). As a result, the triplet state of PBNT-BDD is higher than the charge transfer (CT) state, which would suppress the recombination via triplet state effectively.

4.
ACS Appl Mater Interfaces ; 11(51): 48155-48161, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31777242

RESUMEN

Generally, low band gap material-based photovoltaic devices have reduced open circuit voltage (VOC), and realizing the trade-off between the low band gap (Eg < 1.6 eV) and high VOC (>0.9 V) could be critical to give efficient polymer solar cells, especially for high-performance semitransparent PSCs and tandem solar cells. Although lots of efforts have been made to address the issue, most results have not been gratifying. In this work, the polymer PTBTz-Cl based on the chlorination method and efficient thiazole-induced strategy was designed and synthesized, aiming at the deep HOMO energy level, and the enhanced backbone planarity caused by the weak noncovalent Cl···S interaction. In addition, the methyl-substituted polymer PTBTz-Me was constructed as the reference due to the similar van der Waals radius of the side chain (CH3: 0.20 nm vs Cl: 0.18 nm). Encouragingly, in comparison with that of PTBTz-2, the newly synthesized polymers exhibit the red-shifted absorption spectra ranging from 300 to 770 nm, with an obviously reduced Eg of ∼1.6 eV. However, the function of Cl and Me substituents is different. Compared to the polymer PTBTz-Me, PTBTz-Cl exhibits a lower HOMO value, stronger crystallinity, and more compact intramolecular interactions. Consequently, the polymer PTBTz-Cl exhibits excellent photovoltaic performance with a notable VOC of 0.94 V and a power conversion efficiency of 10.35%, which is ∼11% higher than the 9.12% efficiency based on PTBTz-Me, and is also one of the highest values among polymer/fullerene solar cells. Moreover, a smaller photo energy loss (Eloss) of 0.64 eV is achieved, which is rare among the current high-performance polymer systems.

5.
Macromol Rapid Commun ; 40(11): e1900035, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30924238

RESUMEN

The chlorination strategy has gradually become a promising approach to improve the open circuit voltage (VOC ) in polymer solar cells. In this work, by using an efficient thiazole-induced strategy in a polymer backbone, three thieno[3,4-b]thiophene (TT)-based polymers-PBClTTz-0, PBClTTz-1, and PBClTTz-2-are designed and synthesized with a Cl-substituted benzodithiophene (BDT) moiety and a thiazole unit as a π spacer. As expected, all of the polymers show a desirable open circuit voltage (VOC ) of >0.94 V in the solar cells; specifically, the voltage can reach 1.01 V for polymer PBClTTz-2 with two thiazole moieties. In addition, due to the excellent surface morphology and weak recombination of the active layer, photovoltaic devices based on PBClTTz-1 with one thiazole unit exhibit the highest power conversion efficiency (PCE) of 8.42%, which is noticeably superior to the fluorinated analogue PBClTTz-0 (6.85%). This work reveals the influence of the thiazole unit in a quinoid polymer backbone and confirms that the Donor-Acceptor(π)-Quinoid strategy is a promising construction method in molecular design.


Asunto(s)
Polímeros/química , Tiazoles/química , Halogenación , Energía Solar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...