Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur Radiol ; 34(1): 355-366, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37528301

RESUMEN

OBJECTIVES: To determine whether the texture feature analysis of multi-phase abdominal CT can provide a robust prediction of benign and malignant, histological subtype, pathological stage, nephrectomy risk, pathological grade, and Ki67 index in renal tumor. METHODS: A total of 1051 participants with renal tumor were split into the internal cohort (850 patients from four different hospitals) and the external testing cohort (201 patients from another local hospital). The proposed framework comprised a 3D-kidney and tumor segmentation model by 3D-UNet, a feature extractor for the regions of interest based on radiomics and image dimension reduction, and the six classifiers by XGBoost. A quantitative model interpretation method called SHAP was used to explore the contribution of each feature. RESULTS: The proposed multi-phase abdominal CT model provides robust prediction for benign and malignant, histological subtype, pathological stage, nephrectomy risk, pathological grade, and Ki67 index in the internal validation set, with the AUROC values of 0.88 ± 0.1, 0.90 ± 0.1, 0.91 ± 0.1, 0.89 ± 0.1, 0.84 ± 0.1, and 0.88 ± 0.1, respectively. The external testing set also showed impressive results, with AUROC values of 0.83 ± 0.1, 0.83 ± 0.1, 0.85 ± 0.1, 0.81 ± 0.1, 0.79 ± 0.1, and 0.81 ± 0.1, respectively. The radiomics feature including the first-order statistics, the tumor size-related morphology, and the shape-related tumor features contributed most to the model predictions. CONCLUSIONS: Automatic texture feature analysis of abdominal multi-phase CT provides reliable predictions for multi-tasks, suggesting the potential usage of clinical application. CLINICAL RELEVANCE STATEMENT: The automatic texture feature analysis framework, based on multi-phase abdominal CT, provides robust and reliable predictions for multi-tasks. These valuable insights can serve as a guiding tool for clinical diagnosis and treatment, making medical imaging an essential component in the process. KEY POINTS: • The automatic texture feature analysis framework based on multi-phase abdominal CT can provide more accurate prediction of benign and malignant, histological subtype, pathological stage, nephrectomy risk, pathological grade, and Ki67 index in renal tumor. • The quantitative decomposition of the prediction model was conducted to explore the contribution of the extracted feature. • The study involving 1051 patients from 5 medical centers, along with a heterogeneous external data testing strategy, can be seamlessly transferred to various tasks involving new datasets.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Antígeno Ki-67 , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/cirugía , Neoplasias Renales/patología
2.
Quant Imaging Med Surg ; 13(10): 7105-7116, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37869322

RESUMEN

Background: Placenta accreta spectrum (PAS) is a significant contributor to maternal morbidity and mortality. Our objective was to develop a quantitative analysis framework utilizing magnetic resonance imaging (MRI)-anatomical-clinical features to predict 3 clinically significant parameters in patients with PAS: placenta subtype (invasive vs. non-invasive placenta), intraoperative bleeding (≥1,500 vs. <1,500 mL), and hysterectomy risk (hysterectomy vs. non-hysterectomy). Methods: A total of 125 pregnant women with PAS from 2 medical centers were enrolled into an internal training set and an external testing set. Some 21 MRI-anatomical-clinical features were integrated as input into the framework. The proposed quantitative analytic framework contains mainly 3 classifiers built by extreme gradient boosting (XGBoost) and their testing in external datasets. We also further compared the accuracy of placenta subtype prediction between the proposed model and 4 radiologists. A quantitative model interpretation method called SHapley Additive exPlanations (SHAP) was conducted to explore the contribution of each feature. Results: The placenta subtype (invasive vs. non-invasive), intraoperative bleeding (≥1,500 vs. <1,500 mL), and hysterectomy risk (hysterectomy vs. non-hysterectomy) demonstrated impressive area under the receiver operating characteristic curve (AUROC) values of 0.93, 0.88, and 0.90, respectively, in the internal validation set. Even in the external testing set, these metrics maintained their strength, achieving AUROC values of 0.91, 0.82, and 0.82, respectively. Comparing our proposed framework to the 4 radiologists, our model exhibited superior accuracy, specificity, and sensitivity in predicting placental subtypes within the external testing cohort. The features associated with intraplacental dark T2 bands played a crucial role in the decision-making process of all 3 prediction models. Conclusions: The quantitative analysis framework can provide a robust method for classification of placenta subtype (invasive vs. non-invasive placenta), intraoperative bleeding (≥1,500 vs. <1,500 mL), and hysterectomy risk (hysterectomy vs. non-hysterectomy) based on MRI-anatomical-clinical features in PAS.

3.
Eur Radiol ; 33(11): 7532-7541, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37289245

RESUMEN

OBJECTIVES: To determine whether 3D-CT multi-level anatomical features can provide a more accurate prediction of surgical decision-making for partial or radical nephrectomy in renal cell carcinoma. METHODS: This is a retrospective study based on multi-center cohorts. A total of 473 participants with pathologically proved renal cell carcinoma were split into the internal training and the external testing set. The training set contains 412 cases from five open-source cohorts and two local hospitals. The external testing set includes 61 participants from another local hospital. The proposed automatic analytic framework contains the following modules: a 3D kidney and tumor segmentation model constructed by 3D-UNet, a multi-level feature extractor based on the region of interest, and a partial or radical nephrectomy prediction classifier by XGBoost. The fivefold cross-validation strategy was used to get a robust model. A quantitative model interpretation method called the Shapley Additive Explanations was conducted to explore the contribution of each feature. RESULTS: In the prediction of partial versus radical nephrectomy, the combination of multi-level features achieved better performance than any single-level feature. For the internal validation, the AUROC was 0.93 ± 0.1, 0.94 ± 0.1, 0.93 ± 0.1, 0.93 ± 0.1, and 0.93 ± 0.1, respectively, as determined by the fivefold cross-validation. The AUROC from the optimal model was 0.82 ± 0.1 in the external testing set. The tumor shape Maximum 3D Diameter plays the most vital role in the model decision. CONCLUSIONS: The automated surgical decision framework for partial or radical nephrectomy based on 3D-CT multi-level anatomical features exhibits robust performance in renal cell carcinoma. The framework points the way towards guiding surgery through medical images and machine learning. CLINICAL RELEVANCE STATEMENT: We proposed an automated analytic framework that can assist surgeons in partial or radical nephrectomy decision-making. The framework points the way towards guiding surgery through medical images and machine learning. KEY POINTS: • The 3D-CT multi-level anatomical features provide a more accurate prediction of surgical decision-making for partial or radical nephrectomy in renal cell carcinoma. • The data from multicenter study and a strict fivefold cross-validation strategy, both internal validation set and external testing set, can be easily transferred to different tasks of new datasets. • The quantitative decomposition of the prediction model was conducted to explore the contribution of each extracted feature.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/diagnóstico por imagen , Carcinoma de Células Renales/cirugía , Carcinoma de Células Renales/patología , Neoplasias Renales/diagnóstico por imagen , Neoplasias Renales/cirugía , Neoplasias Renales/patología , Estudios Retrospectivos , Nefrectomía/métodos , Tomografía Computarizada por Rayos X/métodos
4.
Materials (Basel) ; 16(2)2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36676445

RESUMEN

Cables are the main load-bearing components of a cable bridge and typically composed of high strength steel wires with a galvanized coating or Galfan coating. Galfan steel wire has recently started to be widely used because of its better corrosion resistance than galvanized steel wire. The corrosion characteristics of the coating and the difference in the corrosion fatigue process of the two types of steel wire are unclear. To further improve the service performance and maintenance of cable bridges, this study investigated the corrosion characteristics of galvanized steel wire and Galfan steel wire through accelerated corrosion tests and established a time-varying model of uniform corrosion and pitting corrosion of high-strength steel wire. Then, a long-span suspension bridge was taken as the research object, and the corrosion fatigue degradation of the two kinds of steel wire under a traffic load was analyzed on the basis of traffic monitoring data. The results showed that the uniform corrosion of the two types of steel wire conformed to an exponential development trend, the corrosion coefficient of galvanized steel wire conformed to the normal distribution, and the corrosion coefficient of Galfan steel wire conformed to the Cauchy distribution. The maximum pitting coefficient distribution of the two kinds of steel wire conformed to the generalized extreme value distribution. The location parameters and scale parameters of the two distributions showed an exponential downward trend with the increase of corrosion duration. When the traffic intensity was low, the corrosion characteristics of the steel wire was the main factor affecting its service life, and the average service life of Galfan steel wire was significantly higher than that of galvanized steel wire. Under a dense traffic flow, the service life of the steel wire was mainly controlled by the traffic load, and the service life of Galfan steel wire was slightly improved. Effective anti-corrosion measures are a key factor for improving the service life of steel wire.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA