Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 846
Filtrar
1.
Nanomaterials (Basel) ; 14(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38727370

RESUMEN

The time-dependent interfacial adhesion between rock and fresh mortar is key for printing concrete linings in mountain tunnels. However, a scientific deficit exists in the time-dependent evolution of the interfacial adhesion, which can cause adhesion failure when printing tunnel lining. Nanoclay has the potential to increase the interfacial adhesion and eliminate the adhesion failure. Before the actual printing of tunnel linings, the time-dependent interfacial adhesion between artificial rock and fresh mortar modified by nanoclay should be understood. This paper studied the time-dependent interfacial adhesion based on fast tack tests, fast shear tests, and isothermal calorimetry tests. With the addition of nanoclay, the maximum tensile stress and the maximum shear stress increased. Compared with a reference series, the maximum interfacial tensile stress in a 0.3% nanoclay series increased by 106% (resting time 1 min) and increased by 209% (resting time 32 min). A two-stage evolution of the interfacial adhesion was found with the addition of nanoclay. In the first stage, the time-dependent interfacial adhesion increased rapidly. A 0.3% NC series showed an increase rate six times higher than that of the reference series. As the matrices aged, the increase rate slowed down and followed a linear pattern of increase, still higher than that of the reference series. The stiffening of fresh matrices resulted in the interface failure mode transition from a ductile failure to a brittle failure. The effect of nanoclay on flocculation and on accelerating the hydration contributed to the time-dependent interfacial adhesion between artificial rock and fresh mortar.

2.
Biochem Genet ; 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734758

RESUMEN

BACKGROUND AND PURPOSE: Endoplasmic reticulum stress (ERS) has been reported to be closely associated with the development of osteoarthritis (OA), but the underlying mechanisms are not fully delineated. The present study was designed to investigate the involvement of ERS-related genes in regulating OA progression. METHODS: The expression profiles of OA patients and normal people were downloaded from the gene expression omnibus (GEO) database. The differentially expressed genes (DEGs) in datasets GSE55457 and GSE55235 were screened and identified by R software with the construction of the protein-protein interaction (PPI) networks. Through the STRING and Venn diagram analysis, hub ERS-related genes were obtained. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses were performed. Biomarkers with high diagnostic values of osteoarthritis (OA) were studied. The hematoxylin and eosin (H&E) staining and micro-CT were applied to evaluate the establishment of the OA model. The expression levels of biomarkers were validated with the use of reverse transcription­quantitative polymerase chain reaction (RT-qPCR) and western blot. Finally, we evaluated the correlations of hub ERS-related genes with the immune infiltration cells via the CIBERSORT algorithm. RESULTS: A total of 60 downregulated and 52 upregulated DEGs were identified, and the following GO and KEGG pathway analyses verified that those DEGs were mainly enriched in biological process (BP), cellular component (CC), molecular function (MF), and inflammation-associated signal pathways. Interestingly, among all the DEGs, six ER stress-associated genes, including activating transcription factor 3 (ATF3), DEAD-Box Helicase 3 X-Linked (DDX3X), AP-1 transcription factor subunit (JUN), eukaryotic initiation factor 4 (EIF4A1), KDEL endoplasmic reticulum protein retention receptor 3 (KDELR3), and vascular endothelial growth factor A (VEGFA), were found to be closely associated with OA progression, and the following RT-qPCR and Western Blot analysis confirmed that DDX3X, JUN, and VEGFA were upregulated, whereas KDELR3, EIF4A1, and ATF3 were downregulated in OA rats tissues compared to the normal tissues, which were in accordance with our bioinformatics findings. Furthermore, our receiver operating characteristic (ROC) curve analysis verified that the above six ER stress-associated genes could be used as ideal biomarkers for OA diagnosis and those genes also potentially regulated immune responses by influencing the biological functions of mast cells and macrophages. CONCLUSION: Collectively, the present study firstly identified six ER stress-associated genes (ATF3, DDX3X, JUN, EIF4A1, KDELR3, and VEGFA) that may play critical role in regulating the progression of OA.

3.
Saudi Med J ; 45(5): 481-489, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38734428

RESUMEN

OBJECTIVES: To assess the clinical relevance and prognostic value of changes in the Naples prognostic score (NPS) after neoadjuvant chemoradiotherapy (NACR) among esophageal squamous cell carcinoma (ESCC) patients. METHODS: We studied 232 locally advanced ESCC patients who received NACR before undergoing esophagectomy retrospectively. Categorizing individuals into the elevated NPS group and the non-elevated NPS group based on the change in NPS after NACR (ΔNPS > 0 or ∆NPS ≤ 0), we examined and compared the clinicopathological characteristics, survival rates, and postoperative complications between these 2 groups (∆NPS = post-NACR NPS - pre-NACR NPS). RESULTS: Results: Out of the 232 patients enrolled, 105 exhibited elevated NPS levels, while 127 showed non-elevated NPS levels. Survival analyses indicated inferior overall survival (OS) (p=0.024) and recurrence-free survival (RFS) (p=0.047) in the elevated NPS cohort compared to the non-elevated NPS cohort. Subsequent cox regression analyses identified the post-NACR change in NPS as an independent prognostic indicator for RFS (p=0.029) and OS (p=0.036). CONCLUSION: Elevated NPS post-NACR emerged as a significant indicator of worse prognosis for locally advanced ESCC patients who underwent NACR. This finding has great potential to be useful for recognizing high-risk ESCC patients who received NACR before undergoing esophagectomy and making individualized subsequent therapeutic decisions in clinical practice.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Esofagectomía , Terapia Neoadyuvante , Humanos , Femenino , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/mortalidad , Neoplasias Esofágicas/patología , Masculino , Persona de Mediana Edad , Pronóstico , Carcinoma de Células Escamosas de Esófago/terapia , Carcinoma de Células Escamosas de Esófago/mortalidad , Carcinoma de Células Escamosas de Esófago/patología , Estudios Retrospectivos , Anciano , Carcinoma de Células Escamosas/terapia , Carcinoma de Células Escamosas/mortalidad , Carcinoma de Células Escamosas/patología , Tasa de Supervivencia , Quimioradioterapia/métodos , Supervivencia sin Enfermedad
4.
Inorg Chem ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748179

RESUMEN

Photocatalytic nitrogen fixation from N2 provides an alternative strategy for ammonia (NH3) production, but it was limited by the consumption of a sacrificial electron donor for the currently reported half-reaction system. Here, we use naturally abundant and renewable cellulose as the sacrificial reagent for photocatalytic nitrogen fixation over oxygen-vacancy-modified MoO3 nanosheets as the photocatalyst. In this smartly designed photocatalytic system, the photooxidation of cellulose not only generates value-added chemicals but also provides electrons for the N2 reduction reaction and results in the production of NH3 with a maximum rate of 68 µmol·h-1·g-1. Also, the oxygen vacancies provide efficient active sites for both cellulose oxygenolysis and nitrogen fixation reactions. This work represents useful inspiration for realizing nitrogen fixation coupled with the generation of value-added chemicals from N2 and cellulose through a photocatalysis strategy.

6.
Angew Chem Int Ed Engl ; : e202404047, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703385

RESUMEN

The urgency to mitigate environmental impacts from anthropogenic CO2 emissions has propelled extensive research efforts on CO2 reduction. The current work reports a novel approach involving transforming CO2 and ethane into carbon nanotubes (CNTs) using earth-abundant metals (Fe, Co, Ni) at 750 °C. This route facilitates long-term carbon storage via generating high-value CNTs and produces valuable syngas with adjustable H2/CO ratios as byproducts. Without CO2, direct pyrolysis of ethane undergoes rapid deactivation. The participation of CO2 not only enhances the durability of the catalyst, but also contributes about 30% of the CNTs production, presenting a viable solution to CO2 challenges. The CNT morphology depends on the catalyst used. Co- and Ni-based catalysts produce CNT with a 20 nm diameter and micrometer length, whereas Fe-based catalysts yield bamboo-like structures. This work represents a pioneering effort in utilizing CO2 and ethane for CNT production with potential environmental and economic benefits.

7.
Environ Sci Technol ; 58(19): 8228-8238, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38695658

RESUMEN

Inhalation of fine particulate matter PM2.5-bound arsenic (PM2.5-As) may cause significant cardiovascular damage, due to its high concentration, long transmission range, and good absorption efficiency in organisms. However, both the contribution and the effect of the arsenic exposure pathway, with PM2.5 as the medium, on cardiovascular system damage in nonferrous smelting sites remain to be studied. In this work, a one-year site sample collection and analysis work showed that the annual concentration of PM2.5-As reached 0.74 µg/m3, which was 120 times the national standard. The predominant species in the PM2.5 samples were As (V) and As (III). A panel study among workers revealed that PM2.5-As exposure dominantly contributed to human absorption of As. After exposure of mice to PM2.5-As for 8 weeks, the accumulation of As in the high exposure group reached equilibrium, and its bioavailability was 24.5%. A series of animal experiments revealed that PM2.5-As exposure induced cardiac injury and dysfunction at the environmental relevant concentration and speciation. By integrating environmental and animal exposure assessments, more accurate health risk assessment models exposed to PM2.5-As were established for metal smelting areas. Therefore, our research provides an important scientific basis for relevant departments to formulate industry supervision, prevention and control policies.


Asunto(s)
Arsénico , Material Particulado , Humanos , Ratones , Animales , Exposición Profesional , Enfermedades Cardiovasculares , Medición de Riesgo , Disponibilidad Biológica , Contaminantes Atmosféricos , Metalurgia
8.
iScience ; 27(5): 109701, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38680658

RESUMEN

Genome-wide circulating cell-free DNA (ccfDNA) fragmentation for cancer detection has been rarely evaluated using blood samples collected before cancer diagnosis. To evaluate ccfDNA fragmentation for detecting early hepatocellular carcinoma (HCC), we first modeled and tested using hospitalized HCC patients and then evaluated in a population-based study. A total of 427 samples were analyzed, including 270 samples collected prior to HCC diagnosis from a population-based study. Our model distinguished hospital HCC patients from controls excellently (area under curve 0.999). A high ccfDNA fragmentation score was highly associated with an advanced tumor stage and a shorter survival. In evaluation, the model showed increasing sensitivities in detecting HCC using 'pre-samples' collected ≥4 years (8.3%), 3-4 years (20.0%), 2-3 years (31.0%), 1-2 years (35.0%), and 0-1 year (36.4%) before diagnosis. These findings suggested ccfDNA fragmentation is sensitive in clinical HCC detection and might be helpful in screening early HCC.

9.
Exp Ther Med ; 27(5): 233, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38628660

RESUMEN

The present study aimed to elucidate the role of autophagy-related genes (ARGs) in calcific aortic valve disease (CAVD) and their potential interactions with immune infiltration via experimental verification and bioinformatics analysis. A total of three microarray datasets (GSE12644, GSE51472 and GSE77287) were obtained from the Gene Expression Omnibus database, and gene set enrichment analysis was performed to identify the relationship between autophagy and CAVD. After differentially expressed genes and differentially expressed ARGs (DEARGs) were identified using CAVD samples and normal aortic valve samples, a functional analysis was performed, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses, protein-protein interaction network construction, hub gene identification and validation, immune infiltration and drug prediction. The results of the present study indicated a significant relationship between autophagy and CAVD. A total of 46 DEARGs were identified. GO and pathway enrichment analyses revealed the complex roles of DEARGs in regulating CAVD, including multiple gene functions and pathways. A total of 10 hub genes were identified, with three (SPP1, CXCL12 and CXCR4) consistently upregulated in CAVD samples compared with normal aortic valve samples in multiple datasets and experimental validation. Immune infiltration analyses demonstrated significant differences in immune cell proportions between CAVD samples and normal aortic valve samples, thus showing the crucial role of immune infiltration in CAVD development. Furthermore, therapeutic drugs were predicted that could target the identified hub genes, including bisphenol A, resveratrol, progesterone and estradiol. In summary, the present study illuminated the crucial role of autophagy in CAVD development and identified key ARGs as potential therapeutic targets. In addition, the observed immune cell infiltration and predicted autophagy-related drugs suggest promising avenues for future research and novel CAVD treatments.

10.
Clin Cancer Res ; 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630548

RESUMEN

PURPOSE: To evaluate the utility of tumor content in circulating cell-free DNA (ccfDNA) for monitoring hepatocellular carcinoma (HCC) throughout its natural history. METHODS: We included 67 hepatitis B virus (HBV)-related HCC patients, of whom 17 had paired pre- and post-treatment samples, and 90 controls. Additionally, in a prospective cohort with HBV surface antigen-positive participants recruited in 2012 and followed up biannually with blood sample collections until 2019, we included 270 repeated samples before diagnosis from 63 participants who later developed HCC (pre-HCC samples). Shallow whole-genome sequencing and the ichorCNA method were used to analyze genome-wide copy number and tumor content in ccfDNA. RESULTS: High tumor content was associated with advanced tumor stage (P < 0.001) and a poor survival after HCC diagnosis (HR=12.35; 95% confidence interval [CI]=1.413-107.9; P = 0.023). Tumor content turned negative after surgery (P = 0.027), while remained positive after transarterial chemoembolization treatment (P = 0.578). In non-HCC samples, the mean tumor content (±SD) was 0.011 (±0.007) and had a specificity of 97.8% (95%CI=92.2%-99.7%). In pre-HCC samples, tumor content increased from 0.014 in 4 years before diagnosis to 0.026 in 1 year before diagnosis. The sensitivity of tumor content in detecting HCC increased from 22.7% (95%CI=11.5%-37.8%) within one year before diagnosis to 30.4% (95%CI=13.2%-52.9%) at BCLC stage 0/A, 81.8% (95%CI=59.7%-94.8%) at stage B, and 95.5% (95%CI=77.2%-99.9%) at stage C. CONCLUSIONS: The tumor content in ccfDNA is correlated with tumor burden and may help in monitoring HCC one year earlier than clinical diagnosis and in predicting patient prognosis.

11.
Materials (Basel) ; 17(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612016

RESUMEN

In the realm of cementitious materials, integrating nanoclay shows promise in enhancing properties relevant to additive manufacturing. This paper presents a novel mathematical model that combines simple empirical dissolution/nucleation Avrami-like kinetics with a thixotropic kinetics equation. To analyze the initial exothermic peak, two sets of the calculation parameter function are built to describe the exothermic rate as a function of time, following an exponential pattern. This allows for the prediction of the changes in cumulative heat and heat rate during hydration, considering different concentrations of nanoclay. In the rheological aspect, the relationship between shear stress, shear rate, and time is modeled as a combination of exponential dependencies. This enables the prediction of the variations in shear stress with one variable while holding the other constant (either time or shear rate). By integrating these aspects, this model effectively describes both the first exothermal peak and the rheological behavior during cement hydration with the inclusion of nanoclay. Validated against experimental results, these models demonstrate good accuracy (overall below 3% error), reliability, and applicability. The findings offer valuable insights into the thermal and rheological aspects of concrete printing, enabling informed design decisions for both scientific and industrial applications.

12.
iScience ; 27(4): 109469, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38577101

RESUMEN

The extracellular superoxide dismutases (ecSODs) secreted by Microplitis bicoloratus reduce the reactive oxygen species (ROS) stimulated by the Microplitis bicoloratus bracovirus. Here, we demonstrate that the bacterial transferase hexapeptide (hexapep) motif and bacterial-immunoglobulin-like (BIg-like) domain of ecSODs bind to the cell membrane and transiently open hemichannels, facilitating ROS reductions. RNAi-mediated ecSOD silencing in vivo elevated ROS in host hemocytes, impairing parasitoid larva development. In vitro, the ecSOD-monopolymer needed to be membrane bound to open hemichannels. Furthermore, the hexapep motif in the beta-sandwich of ecSOD49 and ecSOD58, and BIg-like domain in the signal peptides of ecSOD67 were required for cell membrane binding. Hexapep motif and BIg-like domain deletions induced ecSODs loss of adhesion and ROS reduction failure. The hexapep motif and BIg-like domain mediated ecSOD binding via upregulating innexins and stabilizing the opened hemichannels. Our findings reveal a mechanism through which ecSOD reduces ROS, which may aid in developing anti-redox therapy.

14.
Cell Rep Med ; 5(4): 101489, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38554705

RESUMEN

Lung adenocarcinoma is a type of cancer that exhibits a wide range of clinical radiological manifestations, from ground-glass opacity (GGO) to pure solid nodules, which vary greatly in terms of their biological characteristics. Our current understanding of this heterogeneity is limited. To address this gap, we analyze 58 lung adenocarcinoma patients via machine learning, single-cell RNA sequencing (scRNA-seq), and whole-exome sequencing, and we identify six lung multicellular ecotypes (LMEs) correlating with distinct radiological patterns and cancer cell states. Notably, GGO-associated neoantigens in early-stage cancers are recognized by CD8+ T cells, indicating an immune-active environment, while solid nodules feature an immune-suppressive LME with exhausted CD8+ T cells, driven by specific stromal cells such as CTHCR1+ fibroblasts. This study also highlights EGFR(L858R) neoantigens in GGO samples, suggesting potential CD8+ T cell activation. Our findings offer valuable insights into lung adenocarcinoma heterogeneity, suggesting avenues for targeted therapies in early-stage disease.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Adenocarcinoma/genética , Adenocarcinoma/patología , Linfocitos T CD8-positivos/patología , Ecotipo , Estudios Retrospectivos
15.
Nat Commun ; 15(1): 2662, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531854

RESUMEN

Understanding intracellular phase separation is crucial for deciphering transcriptional control, cell fate transitions, and disease mechanisms. However, the key residues, which impact phase separation the most for protein phase separation function have remained elusive. We develop PSPHunter, which can precisely predict these key residues based on machine learning scheme. In vivo and in vitro validations demonstrate that truncating just 6 key residues in GATA3 disrupts phase separation, enhancing tumor cell migration and inhibiting growth. Glycine and its motifs are enriched in spacer and key residues, as revealed by our comprehensive analysis. PSPHunter identifies nearly 80% of disease-associated phase-separating proteins, with frequent mutated pathological residues like glycine and proline often residing in these key residues. PSPHunter thus emerges as a crucial tool to uncover key residues, facilitating insights into phase separation mechanisms governing transcriptional control, cell fate transitions, and disease development.


Asunto(s)
Aprendizaje Automático , Proteínas , Glicina
16.
J Hematol Oncol ; 17(1): 13, 2024 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-38520006

RESUMEN

Inflammation has accompanied human beings since the emergence of wounds and infections. In the past decades, numerous efforts have been undertaken to explore the potential role of inflammation in cancer, from tumor development, invasion, and metastasis to the resistance of tumors to treatment. Inflammation-targeted agents not only demonstrate the potential to suppress cancer development, but also to improve the efficacy of other therapeutic modalities. In this review, we describe the highly dynamic and complex inflammatory tumor microenvironment, with discussion on key inflammation mediators in cancer including inflammatory cells, inflammatory cytokines, and their downstream intracellular pathways. In addition, we especially address the role of inflammation in cancer development and highlight the action mechanisms of inflammation-targeted therapies in antitumor response. Finally, we summarize the results from both preclinical and clinical studies up to date to illustrate the translation potential of inflammation-targeted therapies.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Neoplasias/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Citocinas/metabolismo , Inflamación/metabolismo , Microambiente Tumoral
17.
Int J Surg ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526514

RESUMEN

BACKGROUND: The application of liquid biopsy analysis utilizing circulating tumor DNA (ctDNA) has gained prominence as a biomarker in specific cancer types. Nevertheless, the correlation between ctDNA and the prognostic outcomes of patients with esophageal cancer (EC) remains a subject of controversy. This meta-analysis aims to assess the correlation between ctDNA and the prognosis of EC patients. METHODS: We systematically explored Embase, PubMed, and the Cochrane Database to identify studies reporting on the prognostic value of ctDNA in EC patients before November 2023. The primary outcome involved the determine of associations between ctDNA with overall survival (OS), disease-free survival (DFS)/recurrence-free survival (RFS), as well asprogression-free survival (PFS) among EC patients. Secondary outcomes encompassed a detailed subgroup analysis in the setting of EC, including parameters such as detection time, histological subtypes, treatment modalities, regions, anatomic locations, and detection methods. Publication bias was assessed utilizing Begg's test, Egger's test, and funnel plots. A sensitivity analysis was conducted by systematically excluding individual studies to evaluate the stability of the results. RESULTS: A total of 1203 studies were initially screened, from which 13 studies underwent further analysis, encompassing 604 patients diagnosed with EC. The comprehensive pooled analysis indicated a significant association between the detection of ctDNA and poor OS (HR: 3.65; 95% CI: 1.97-6.75, P<0.001), DFS/RFS (HR: 6.08; 95% CI: 1.21-30.50, P<0.001), and PFS (HR: 2.84; 95% CI: 1.94-4.16, P<0.001). Subgroup analysis showed that ctDNA remained a consistent negative predictor of OS when stratified by different detection time, histological subtypes, regions, anatomic locations, and detection methods. Furthermore, subgroup analysis stratified by regions and study types demonstrated an association between ctDNA detection and poor PFS in EC patients. CONCLUSION: Our results indicate plasma ctDNA may serve as robust prognostic markers for OS, DFS/RFS, and PFS among EC patients. This finding suggests that plasma ctDNA could offer a highly effective approach for risk stratification and personalized medicine.

18.
Chem Bio Eng ; 1(1): 67-75, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38434798

RESUMEN

Plastic hydrogenolysis is an attractive approach for producing value-added chemicals due to its mild reaction conditions, but controlling product distribution is challenging due to the formation of undesired CH4. This work reports several bimetallic RuM3/CeO2 (M = Fe, Co, Ni) catalysts that shift the product of low-density polyethylene hydrogenolysis toward longer-chain hydrocarbons. These catalysts were characterized by using X-ray absorption fine structure spectroscopy, electron microscopy imaging, and H2 temperature-programmed reduction. The combined catalytic evaluation and characterization results revealed that the product distribution was regulated by the formation of bimetallic alloys. A model compound, n-hexadecane, was selected to further understand the differences in hydrogenolysis over the Ru-based catalysts. Although a longer reaction time shifted the product toward smaller molecules, the bimetallic (RuCo3/CeO2) catalyst limited the further conversion of C2-C5 into CH4. This work highlights the role of bimetallic alloys in tailoring the interaction with hydrocarbons, thereby controlling the product distribution of polymer hydrogenolysis.

19.
J Environ Manage ; 356: 120726, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38537456

RESUMEN

Electrochemical technology is a promising technique for separating ammonia from mature landfill leachate. However, the accompanying migration and transformation of coexisting pollutants and strategies for further high-value resourceful utilization of ammonia have rarely received attention. In this study, an electrochemical separation-Rhodopseudomonas palustris electrolysis cell coupled system was initially constructed for efficient separation and conversion of nitrogen in mature landfill leachate to microbial protein with synchronously tracking the transport and conversion of coexisting heavy metals accompanying the process. The results revealed that ammonia concentration in the cathode increased from 40.3 to 49.8% with increasing the current density from 20 to 40 mA/cm2, with less than 3% of ammonia transformation to NO2--N and NO3--N. During ammonia separation, approximately 95% of HM-DOMs (Cr, Cu, Ni, Pb, and Zn) were released into the anolyte due to humus degradation and further diffused to the cathode. A significant correlation was observed between the releases of HM-DOMs. Cu-DOMs accounted for 70.2% of the total Cu content, which was the highest proportion among the heavy metals (HMs). Among the HMs in anolyte, 57.4% of Pb, 52.5% of Ni, and 50.6% of Zn diffused to the cathode, and most of the HMs were removed in the form of hydroxide precipitations due to heavy alkaline catholyte. Compared with the open-circuit condition, the utilization efficiency of NH4+-N in the R. palustris electrolysis cell increased by 445.1% with 47% and 50% increases in final NH4+-N conversion rate and R. palustris biomass, respectively, due to bio-electrochemical enhanced phototrophic metabolism and acid generation for buffering the strong alkalinity of the electrolyte to maintain suitable growth conditions for R. palustris.


Asunto(s)
Amoníaco , Rhodopseudomonas , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Plomo , Electrólisis , Instalaciones de Eliminación de Residuos , Nitrógeno
20.
Front Immunol ; 15: 1335333, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38449872

RESUMEN

Background and objective: Macrophages play a crucial and dichotomous role cardiac repair following myocardial ischemia-reperfusion, as they can both facilitate tissue healing and contribute to injury. This duality is intricately linked to environmental factors, and the identification of macrophage subtypes within the context of myocardial ischemia-reperfusion injury (MIRI) may offer insights for the development of more precise intervention strategies. Methods: Specific marker genes were used to identify macrophage subtypes in GSE227088 (mouse single-cell RNA sequencing dataset). Genome Set Enrichment Analysis (GSEA) was further employed to validate the identified LAM subtypes. Trajectory analysis and single-cell regulatory network inference were executed using the R packages Monocle2 and SCENIC, respectively. The conservation of LAM was verified using human ischemic cardiomyopathy heart failure samples from the GSE145154 (human single-cell RNA sequencing dataset). Fluorescent homologous double-labeling experiments were performed to determine the spatial localization of LAM-tagged gene expression in the MIRI mouse model. Results: In this study, single-cell RNA sequencing (scRNA-seq) was employed to investigate the cellular landscape in ischemia-reperfusion injury (IRI). Macrophage subtypes, including a novel Lipid-Associated Macrophage (LAM) subtype characterized by high expression of Spp1, Trem2, and other genes, were identified. Enrichment and Progeny pathway analyses highlighted the distinctive functional role of the SPP1+ LAM subtype, particularly in lipid metabolism and the regulation of the MAPK pathway. Pseudotime analysis revealed the dynamic differentiation of macrophage subtypes during IRI, with the activation of pro-inflammatory pathways in specific clusters. Transcription factor analysis using SCENIC identified key regulators associated with macrophage differentiation. Furthermore, validation in human samples confirmed the presence of SPP1+ LAM. Co-staining experiments provided definitive evidence of LAM marker expression in the infarct zone. These findings shed light on the role of LAM in IRI and its potential as a therapeutic target. Conclusion: In conclusion, the study identifies SPP1+ LAM macrophages in ischemia-reperfusion injury and highlights their potential in cardiac remodeling.


Asunto(s)
Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Humanos , Animales , Ratones , Daño por Reperfusión Miocárdica/genética , Genes Reporteros , Macrófagos , Lípidos , Glicoproteínas de Membrana , Receptores Inmunológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...