Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38662565

RESUMEN

Dynamic computation has emerged as a promising strategy to improve the inference efficiency of deep networks. It allows selective activation of various computing units, such as layers or convolution channels, or adaptive allocation of computation to highly informative spatial regions in image features, thus significantly reducing unnecessary computations conditioned on each input sample. However, the practical efficiency of dynamic models does not always correspond to theoretical outcomes. This discrepancy stems from three key challenges: 1) The absence of a unified formulation for various dynamic inference paradigms, owing to the fragmented research landscape; 2) The undue emphasis on algorithm design while neglecting scheduling strategies, which are critical for optimizing computational performance and resource utilization in CUDA-enabled GPU settings; and 3) The cumbersome process of evaluating practical latency, as most existing libraries are tailored for static operators. To address these issues, we introduce Latency-Aware Unified Dynamic Networks (LAUDNet), a comprehensive framework that amalgamates three cornerstone dynamic paradigms-spatially-adaptive computation, dynamic layer skipping, and dynamic channel skipping-under a unified formulation. To reconcile theoretical and practical efficiency, LAUDNet integrates algorithmic design with scheduling optimization, assisted by a latency predictor that accurately and efficiently gauges the inference latency of dynamic operators. This latency predictor harmonizes considerations of algorithms, scheduling strategies, and hardware attributes. We empirically validate various dynamic paradigms within the LAUDNet framework across a range of vision tasks, including image classification, object detection, and instance segmentation. Our experiments confirm that LAUDNet effectively narrows the gap between theoretical and real-world efficiency. For example, LAUDNet can reduce the practical latency of its static counterpart, ResNet-101, by over 50% on hardware platforms such as V100, RTX3090, and TX2 GPUs. Furthermore, LAUDNet surpasses competing methods in the trade-off between accuracy and efficiency. Code is available at: https://www.github.com/LeapLabTHU/LAUDNet.

2.
Biomed Pharmacother ; 173: 116273, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38412715

RESUMEN

Osteoarthritis (OA) is a degenerative joint disease, Increasingly, mitochondrial autophagy has been found to play an important regulatory role in the prevention and treatment of osteoarthritis. Koumine is a bioactive alkaloid extracted from the plant Gelsemium elegans. In previous research, Koumine was found to have potential in improving the progression of OA in rats. However, the specific mechanism of its action has not been fully explained. Therefore, the aim of this study was to investigate whether Koumine can alleviate OA in rats by influencing mitochondrial autophagy. In the in vitro study, rat chondrocytes (RCCS-1) were induced with IL-1ß (10 ng/mL) to induce inflammation, and Koumine (50 µg/mL) was co-treated. In the in vivo study, a rat OA model was established by intra-articular injection of 2% papain, and Koumine was administered orally (1 mg/kg, once daily for two weeks). It was found that Koumine effectively reduced cartilage erosion in rats with osteoarthritis. Additionally, it decreased the levels of inflammatory factors such as IL-1ß, IL-6, and extracellular matrix (ECM) components MMP13 and ADAMTS5 in chondrocytes and articular cartilage tissue, while increasing the level of Collagen II.Koumine inhibited the production of reactive oxygen species (ROS) in cartilage tissue and increased the number of autophagosomes in chondrocytes and articular cartilage tissue. Additionally, it upregulated the expression of mitochondrial autophagy proteins LC3Ⅱ/Ⅰ, PINK1, Parkin, and Drp1. The administration of Mdivi-1 (50 µM) reversed the enhanced effect of Koumine on mitochondrial autophagy, as well as its anti-inflammatory and anti-ECM degradation effects in rats with OA. These findings suggest that Koumine can alleviate chondrocyte inflammation and improve the progression of OA in rats by activating PINK1/Parkin-mediated mitochondrial autophagy.


Asunto(s)
Cartílago Articular , Alcaloides Indólicos , Osteoartritis , Ratas , Animales , Condrocitos/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Ratas Sprague-Dawley , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Cartílago Articular/metabolismo , Autofagia , Interleucina-1beta/metabolismo , Matriz Extracelular/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Quinasas/metabolismo
3.
Int Immunopharmacol ; 129: 111653, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38354511

RESUMEN

T-2 toxin, an unavoidable contaminant in animal feeds, can induce oxidative stress and damage immune organs. Melatonin (MT), a natural and potent antioxidant, has shown promise as a detoxifier for various mycotoxins. However, the detoxifying effect of MT on T-2 toxin has not been previously reported. In order to investigate the protective effect of MT added to diets on the immune system of T-2 toxin-exposed piglets, twenty piglets weaned at 28d of age were randomly divided into control, T-2 toxin (1 mg/kg), MT (5 mg/kg), and T-2 toxin (1 mg/kg) + MT (5 mg/kg) groups(n = 5 per group). Our results demonstrated that MT mitigated T-2 toxin-induced histoarchitectural alterations in the spleen and thymus, such as hemorrhage, decreased white pulp size in the spleen, and medullary cell sparing in the thymus. Further research revealed that MT promoted the expression of Nrf2 and increased the activities of antioxidant enzymes CAT and SOD, while reducing the production of the lipid peroxidation product MDA. Moreover, MT inhibited the NF-κB signaling pathway, regulated the expression of downstream cytokines IL-1ß, IL-6, TNF-α, and TGF-ß1. MT also suppressed the activation of caspase-3 while down-regulating the ratio of Bax/Bcl-2 to reduce apoptosis. Additionally, MT ameliorated the T-2 toxin-induced disorders of immune cells and immune molecules in the blood. In conclusion, our findings suggest that MT may effectively protect the immune system of piglets against T-2 toxin-induced damage by inhibiting oxidative stress, inflammatory response, and apoptosis in the spleen and thymus. Therefore, MT holds the potential as an antidote for T-2 toxin poisoning.


Asunto(s)
Melatonina , Toxina T-2 , Animales , Porcinos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Melatonina/farmacología , Melatonina/uso terapéutico , Melatonina/metabolismo , Bazo , Toxina T-2/toxicidad , Estrés Oxidativo , Apoptosis
4.
J Ethnopharmacol ; 319(Pt 3): 117350, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37907144

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Viola yedoensis Makino (VYM) is a traditional Chinese herbal medicine widely distributed in China. It has many pharmacological effects such as anti-inflammatory, immune regulation and anti-oxidation. However, the protective effect of VYM on the spleen and thymus of broilers induced by heat stress has rarely been reported. AIM OF THE STUDY: We established a heat stress model of broilers to explore the protective effect of VYM on spleen and thymus of broilers. MATERIALS AND METHODS: In this experiment, a heat stress model was made by adjusting the feeding temperature of broilers. The protective effect of VYM on the spleen and thymus of heat-stressed broilers were evaluated by detecting immune organ coefficient, histological observation, Enzyme-Linked Immunosorbent Assay, production of antioxidant enzymes and peroxides, TUNEL Staining, Quantitative Real-time PCR. RESULTS: In this study, 60 healthy male AA broilers were divided into 6 groups: Control, 4.5% VYM, HS, HS + 0.5% VYM, HS + 1.5% VYM, HS + 4.5% VYM. After 42 days of feeding, serum, spleen and thymus were collected for detection and analysis. The study revealed that heat stress can lead to pathological damage in the spleen and thymus of broilers, reduce the content of immunoglobulin and newcastle disease (ND), infectious bursal disease (IBD) antibody levels, increase the expression of inflammatory factors IL-1ß, INF-γ, heat shock 70 kDa protein (HSP70), heat shock 90 kDa protein (HSP90). Heat stress inhibits the activity of antioxidant enzymes CAT and SOD, promotes the production of MDA, and then lead to oxidative damage of the spleen and thymus. In addition, apoptotic cells and the ratio of Bax/Bcl-2 was increased. However, the addition of VYM to the feed can alleviate the adverse effects of heat stress on the spleen and thymus of broilers. CONCLUSIONS: This study showed that the addition of VYM to the diet could inhibit oxidative stress and apoptosis, and reduce the inflammatory damage of heat stress on the spleen and thymus of broilers. This study provides a basis for further exploring the regulatory role of VYM in heat stress-induced immune imbalance in broilers. In addition, this study also provides a theoretical basis for the development of VYM as a feed additive with immunomodulatory effects.


Asunto(s)
Bazo , Viola , Masculino , Animales , Pollos , Antioxidantes/farmacología , Estrés Oxidativo , Apoptosis , Inflamación , Proteínas de Choque Térmico , Respuesta al Choque Térmico
5.
J Agric Food Chem ; 71(33): 12574-12586, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37525894

RESUMEN

Subacute mycotoxin exposure in food is commonly overlooked. As one of the most toxic trichothecene mycotoxins, the T-2 toxin severely pollutes human foods and animal feeds. In our study, we investigated the effects of low-dose T-2 toxin on glucose and lipid metabolic function and further investigated the protective effect of tannic acid (TA) in C57BL/6J mice. Results showed that low-dose T-2 toxin significantly impaired blood glucose and lipid homeostasis, promoted ferroptosis in the pancreas and subsequent repression of insulin secretion in ß-cells, and impacted hepatic glucose and lipid metabolism by targeted inhibition of the insulin receptor substrate (IRS)/phosphatidylin-ositol-3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, which induced insulin resistance and steatosis in the liver. TA treatment attenuated pancreatic function and hepatic metabolism by ameliorating oxidative stress and insulin resistance in mice. These findings provide new perspectives on the toxic mechanism and intervention of chronic subacute toxicity of foodborne mycotoxins.


Asunto(s)
Resistencia a la Insulina , Toxina T-2 , Humanos , Animales , Ratones , Glucosa/metabolismo , Toxina T-2/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Metabolismo de los Lípidos , Lípidos/farmacología , Insulina/metabolismo
6.
PeerJ ; 11: e15863, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601249

RESUMEN

This study investigated the grouped and individualized load-velocity profile (GLVP vs. ILVP) in Bulgarian split squat using Smith machine and free weight. Seventy five recreational male lifters completed two incremental loading tests of Bulgarian split squat. Mean velocity was measured by a linear-position transducer (GymAware). Linear regression equation was applied to construct the GLVP and ILVP. The agreement of predicted %1RM and measured %1RM was assessed by a combination of intraclass correlation coefficient (ICC), coefficient of variation (CV), standard error of measurement (SEM) and Bland-Altman analysis. Acceptable validity was defined as ICC > 0.75, CV ≤ 10% and p ≥ 0.05 (a paired Wilcoxon signed-rank test). A very high level of inverse load-velocity relationships were demonstrated in Bulgarian split squat (r =  - 0.92) with free weights and a Smith machine. ILVP (ICC ≥ 0.98, CV ≤ 8.73%, p ≥ 0.56) was valid enough to predict the %1RM, but GLVP of both limbs revealed large CVs in free weights (CV: 15.4%,15.63%) and a Smith machine (CV: 11.24%, 12.25%). Cross-validation between the actual %1RM and predicted %1RM using free weights and a Smith machine ILVP was not acceptable (p ≤ 0.03, CV ≥ 14.07%). A very high level of inverse relationship were observed between %1RM and MV in Bulgarian split squat using free weights and a Smith machine, indicating individualized load velocity properties, and the ILVP showed high between-devices variability in both scenarios. Using velocity as a measure of loading intensity in Bulgarian split squat needs to consider the individualized load velocity properties, and difference between free weights and a Smith machine.


Asunto(s)
Extremidades , Obreros Metalúrgicos , Masculino , Humanos , Bulgaria , Correlación de Datos , Modelos Lineales
7.
Environ Sci Technol ; 57(35): 13247-13257, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37615362

RESUMEN

Enhanced biological phosphorus removal (EBPR) is an economical and sustainable process for phosphorus removal from wastewater. Despite the widespread application of EBPR for low-strength domestic wastewater treatment, limited investigations have been conducted to apply EBPR to the high-strength wastewaters, particularly, the integration of EBPR and the short-cut nitrogen removal process in the one-stage system remains challenging. Herein, we reported a novel proof-of-concept demonstration of integrating EBPR and nitritation (oxidation of ammonium to nitrite) in a one-stage sequencing batch reactor to achieve simultaneous high-strength phosphorus and short-cut nitrogen removal. Excellent EBPR performance of effluent 0.8 ± 1.0 mg P/L and >99% removal efficiency was achieved fed with synthetic high-strength phosphorus wastewater. Long-term sludge acclimation proved that the dominant polyphosphate accumulating organisms (PAOs), Candidatus Accumulibacter, could evolve to a specific subtype that can tolerate the nitrite inhibition as revealed by operational taxonomic unit (OTU)-based oligotyping analysis. The EBPR kinetic and stoichiometric evaluations combined with the amplicon sequencing proved that the Candidatus Competibacter, as the dominant glycogen accumulating organisms (GAOs), could well coexist with PAOs (15.3-24.9% and 14.2-33.1%, respectively) and did not deteriorate the EBPR performance. The nitrification activity assessment, amplicon sequencing, and functional-based gene marker quantification verified that the unexpected nitrite accumulation (10.7-21.0 mg N/L) in the high-strength EBPR system was likely caused by the nitritation process, in which the nitrite-oxidizing bacteria (NOB) were successfully out-selected (<0.1% relative abundance). We hypothesized that the introduction of the anaerobic phase with high VFA concentrations could be the potential selection force for achieving nitritation based on the literature review and our preliminary batch tests. This study sheds light on developing a new feasible technical route for integrating EBPR with short-cut nitrogen removal for efficient high-strength wastewater treatment.


Asunto(s)
Desnitrificación , Aguas Residuales , Nitritos , Aguas del Alcantarillado , Nitrógeno , Fósforo
8.
Environ Res ; 232: 116347, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37290618

RESUMEN

Sludge stabilization was affected by solid content during autothermal thermophilic aerobic digestion (ATAD). Thermal hydrolysis pretreatment (THP) could alleviate the issues of high viscosity, slow solubilization and low ATAD efficiency caused by increased solid content. The influence of THP on the stabilization of sludge with different solid contents (5.24%-17.14%) during ATAD was investigated in this study. The results demonstrated that stabilization was achieved with volatile solid (VS) removal of 39.0%-40.4% after 7-9 days of ATAD for sludge with solid content of 5.24%-17.14%. The solubilization of sludge with different solid contents reached 40.1%-45.0% after THP. The rheological analysis indicated that the apparent viscosity of sludge was obviously reduced after THP at different solid contents. The increase in fluorescence intensity of fulvic acid-like organics, soluble microbial by-products and humic acid-like organics in the supernatant after THP and the decrease in fluorescence intensity of soluble microbial by-products after ATAD were detected by excitation emission matrix (EEM). The molecular weight (MW) distribution in the supernatant elucidated that the proportion of 50 kDa < MW < 100 kDa increased to 16%-34% after THP and the proportion of 10 kDa < MW < 50 kDa decreased to 8%-24% after ATAD. High throughput sequencing showed that the dominant bacterial genera shifted from Acinetobacter, Defluviicoccus and Norank_f__norank_o__PeM15 to Sphaerobacter and Bacillus during ATAD. This work revealed that solid content of 13%-17% was appropriate for efficient ATAD and rapid stabilization under THP.


Asunto(s)
Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas del Alcantarillado/microbiología , Hidrólisis , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos/microbiología , Digestión
9.
Food Chem Toxicol ; 177: 113811, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37179046

RESUMEN

Zearalenone (ZEA) is a mycotoxin commonly found in cereals and feedstuffs, which can induce oxidative stress and inflammation to cause liver damage in humans and animals. Betulinic acid (BA) is extracted from pentacyclic triterpenoids of many natural plants and has anti-inflammatory, and anti-oxidation biological activities in many studies. However, the protective effect of BA on liver injury induced by ZEA has not been reported. Therefore, this study aims to explore the protective effect of BA on ZEA-induced liver injury and its possible mechanism. In the mice experiment, ZEA exposure increased the liver index and caused histopathological impairment, oxidative damage, hepatic inflammatory responses, and increased hepatocyte apoptosis. However, when combined with BA, it could inhibit the production of ROS, up-regulate the proteins expression of Nrf2 and HO-1 and down-regulate the expression of Keap1, and alleviate oxidative damage and inflammation in the liver of mice. In addition, BA could alleviate ZEA-induced apoptosis and liver injury in mice by inhibiting the endoplasmic reticulum stress (ERS) and MAPK signaling pathways. In conclusion, this study revealed the protective effect of BA on the hepatotoxicity of ZEA for the first time, providing a new perspective for the development of ZEA antidote and the application of BA.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Zearalenona , Humanos , Ratones , Animales , Zearalenona/toxicidad , Zearalenona/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Ácido Betulínico , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Transducción de Señal , Estrés Oxidativo , Inflamación , Estrés del Retículo Endoplásmico , Apoptosis
10.
Foods ; 12(8)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37107412

RESUMEN

Damage to the reproductive system is the key factor leading to male infertility. Citrinin (CTN) is produced by Penicillium and Aspergillus in nature, and is definitely found in food and animal feed. Studies have revealed that CTN can cause damage to male reproductive organs and reduce fertility, but the mechanism of toxicity has not been revealed. In the present study, male Kunming mice were given different doses of CTN (0, 1.25, 5 or 20 mg/kg BW) by intragastric administration. The results demonstrated that CTN exposure caused disorder of androgen, a decline in sperm quality, and histopathological damage of testis. The inhibition of the expression of ZO-1, claudin-1 and occludin suggests that the blood-testis barrier (BTB) was damaged. Simultaneously, CTN inhibited the activity of antioxidant enzymes such as CAT and SOD, and promoted the production of MDA and ROS, resulting in oxidative damage of testis. Additionally, apoptotic cells were detected and the ratio of Bax/Bcl-2 was increased. Not only that, CTN activated the expression of endoplasmic reticulum stress (ERS)-related proteins IRE1, ATF6, CHOP, and GRP78. Interestingly, 4-Phenylbutyric Acid (4-PBA, an ERS inhibitor) treatment blocked the adverse effects of CTN exposure on male reproduction. In short, the findings suggested that CTN exposure can cause damage to mouse testis tissue, in which ERS exhibited an important regulatory role.

11.
Int J Disaster Risk Reduct ; 91: 103670, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37041883

RESUMEN

The COVID-19 pandemic and the associated restrictions have raised the awareness of building pandemic-resilient cities. Prior studies often evaluated the resilience of one type of urban system while lacking a comparison across various urban subsystems. This study fills this gap by measuring and comparing the adaptive resilience to the pandemic of various urban subsystems in Chinese cities. We propose a novel outcome measurement of the pandemic's socioeconomic impacts on cities, i.e., the citizens' complaints data, and use its temporal changes to measure cities' adaptive resilience to the pandemic. We find a wide range of urban subsystems were severely shocked by the pandemic, including the urban economy, construction-and-housing sector, welfare system, and education system. Different urban subsystems exhibit divergent degrees of adaptive resilience to the pandemic. Using cluster analysis, we also identify three types of cities with different patterns of adaptive resilience: cities whose general economies were the least resilient, cities whose construction-and-housing system was the least resilient, and cities that were mostly affected by restriction measures. Our findings contribute to the understanding of the pandemic's socioeconomic costs and help identify the divergent resilience of different urban subsystems so as to develop targeted policy interventions to improve cities' resilience to the pandemic.

12.
J Ethnopharmacol ; 304: 116028, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36529250

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Koumine, an indole alkaloid extracted from Gelsemium elegans Benth, exerts anti-inflammation and antioxidant activities. However, the effects of koumine on intestinal injury induced by H2O2 and its potential molecular mechanisms need larger studies. AIM OF THE STUDY: We established an IPEC-J2 cell damage model induced by H2O2 to explore the protective mechanism of koumine on intestinal injury. MATERIALS AND METHODS: In the experiment, cell damage models were made with hydrogen peroxide. To assess the protective effect of koumine on H2O2-induced IPEC-J2 cell injury, CCK-8, the release of LDH and ROS, transmission electron microscopy and Annexin V-FITC/PI were employed. Western Blot and Quantitative Real-time PCR were used to determine the potential alleviated mechanism of koumine on H2O2-trigged IPEC-J2 cell damage. RESULTS: The results of CCK-8 and LDH implied that koumine has a mitigative effect on H2O2-induced cell damage via upregulating cell viability and suppressing cell membrane fragmentation. Simultaneously, koumine notably inhibited the level of pro-inflammatory factors (IL-1ß, IL-6, IL-8, TNF-α and TGF-ß), the over-production of ROS along with decreasing the injury of mitochondrion, endoplasmic reticulum and lysosome induced by H2O2. Moreover, koumine dramatically attenuated H2O2-triggered IPEC-J2 cell apoptosis and autophagy. Subsequently, Western blot analysis identified NF-ΚB, PI3K and ERS as possible pathway responsible for the protective effect of koumine on H2O2-stimulated IPEC-J2 cell inflammation. CONCLUSIONS: This in vitro experimental study suggests that koumine suppresses the H2O2-induced activation of inflammatory pathways, oxidative injury, ER stress, apoptosis and autophagy, which provide a rationale for therapeutically use in major intestinal diseases.


Asunto(s)
Peróxido de Hidrógeno , FN-kappa B , FN-kappa B/metabolismo , Peróxido de Hidrógeno/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Proteínas Proto-Oncogénicas c-akt , Fosfatidilinositol 3-Quinasas , Sincalida/farmacología , Línea Celular , Alcaloides Indólicos/farmacología , Serina-Treonina Quinasas TOR , Apoptosis
13.
Sci Total Environ ; 859(Pt 2): 160437, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36427709

RESUMEN

The effect of interactions between different components in sewage sludge on the thermochemical transformation of nitrogenous species is usually neglected, which is important to explain the generation mechanism of some key nitrogenous by-products. Here, we investigated the distribution, form, and chemical properties of the products from sludge-extracted protein (PR) under different pyrolysis scenarios using several in-situ probe techniques, to elucidate the critical role of typical sludge organics/inorganics on the evolution of nitrogenous intermediates and by-products. The results suggested that Ca/Fe/Si/Al-containing inorganics significantly affected the pyrolytic behavior of PR and the thermal transformation of nitrogenous species, while sludge organics, including humic acids and polysaccharides, had limited effects on the temperature-dependent evolution of nitrogenous species in PR. Among them, calcium oxide catalyzed the ring-opening reaction of heterocyclic-N with aromatic-like structures, resulting in a 21.1 %-68.8 % reduction in nitrogen fixation efficiency in the char. At lower temperatures (350-450 °C), calcium oxide caused more nitrogen to be transferred to the gas/tar phases in the form of NH3 and heterocyclic-N, and it also enhanced the conversion of nitrile-N → HCN → NO at temperatures above 450 °C. In contrast, polyferric salts inhibited the devolatilization of mono-heterocyclic-N and enhanced the thermal stability of poly-heterocyclic-N, resulting in a maximum increase of 18.5 mg·g-1 of nitrogen content in the char, while reducing the release of NH3 and HCN by 71.1 % and 32.0 %. This work elucidated the interaction between PR and inherent components in sludge, providing key information for the control of nitrogenous volatiles and NOx.


Asunto(s)
Nitrógeno , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Nitrógeno/análisis , Pirólisis , Óxidos
14.
Environ Pollut ; 316(Pt 1): 120435, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36257561

RESUMEN

Zearalenone (ZEA) is a mycotoxin with estrogen-like biological activity, which widely present in feed and raw materials, with strong reproductive system toxicity and a major threat to animal reproduction. Betulinic acid (BA) is a natural plant compound with antioxidant, anti-inflammatory and other pharmacological activities. However, the mechanism of ZEA-induced uterine injury and the protective effect of BA have not been reported. Our results show that ZEA could cause uterine histopathological damage and cellular ultrastructural damage, affecting the secretion of sex hormones, such as estradiol (E2) and progesterone (P4), and increase the mRNA and protein expression of estrogen receptor α (ERα). ZEA could inhibit the activities of catalase (CAT) and superoxide dismutase (SOD), increase the production of malondialdehyde (MDA) and reactive oxygen species (ROS), and cause uterine oxidative stress. Furthermore, ZEA affected the homeostasis of uterine cell proliferation and death by regulating the expression of proliferating cell nuclear antigen (PCNA) and activating the mitochondrial apoptotic pathway. ZEA-induced uterine injury might be related to the activation of p38/ERK MAPK signaling pathway. However, the regulatory effect of ZEA on the uterus was reversed after BA treatment. In conclusion, the uterus is an important target organ attacked by ZEA, and BA showed a good therapeutic effect.


Asunto(s)
Zearalenona , Femenino , Ratones , Animales , Zearalenona/toxicidad , Triterpenos Pentacíclicos/farmacología , Estrés Oxidativo , Útero , Apoptosis , Ácido Betulínico
15.
Avian Pathol ; 52(1): 12-24, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35980124

RESUMEN

The aim of this study was to evaluate the effects of anti-stress agents on the growth performance and immune function of broilers under immune stress conditions induced by vaccination. A total of 128, 1-day-old Arbor Acres broilers were randomly divided into four groups. Group normal control (NC) was the control group. Group vaccination control (VC), T 0.5%, and T 1% were the treatment groups, which were nasally vaccinated with two doses of the Newcastle disease virus (NDV) vaccine. The chicks in groups T 0.5% and T 1% were fed conventional diets containing 0.5% and 1% anti-stress agents. Thereafter, these broilers were slaughtered on 1, 7, 14, and 21 days post-vaccination. The results indicated that anti-stress agents could significantly reduce serum adrenocorticotropic hormone (ACTH) (P < 0.01) and cortisol (CORT) (P < 0.05) levels, and improve the growth performance (P < 0.05) and immune function of broilers (P < 0.05); However, the levels of malondialdehyde (MDA) (P < 0.05) were decreased, and the decreased total antioxidant capacity (T-AOC) (P < 0.01) levels mediated by vaccination were markedly improved. In addition, anti-stress agents could attenuate apoptosis in spleen lymphocytes (P < 0.01) by upregulating the ratio of Bcl-2 to BAX (P < 0.01) and downregulating the expression of caspase-3 and -9 (P < 0.01), which might be attributed to the inhibition of the enzymatic activities of caspase-3 and -9 (P < 0.05). In conclusion, anti-stress agents may improve growth performance and immune function in broilers under immune-stress conditions.RESEARCH HIGHLIGHTS Investigation of effects and mechanism of immune stress induced by vaccination.Beneficial effect of anti-stress agents on growth performance, immune function, oxidative stress, and regulation of lymphocyte apoptosis.Demonstration of the effects of apoptosis on immune function in the organism.


Asunto(s)
Antioxidantes , Pollos , Animales , Caspasa 3/metabolismo , Antioxidantes/metabolismo , Dieta/veterinaria , Vacunación/veterinaria , Inmunidad , Alimentación Animal/análisis , Suplementos Dietéticos
16.
Environ Sci Pollut Res Int ; 30(2): 4435-4447, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35969347

RESUMEN

Pyrolysis carbonization of sewage sludge is employed to achieve carbon sequestration and access carbon resources, while the quality of the obtained sludge-based carbon (SBC) is poor due to high ash contents and volatile organic matter. Here, carbonization in KOH/Na2CO3 (K/Na) bi-molten salts was developed for SBC preparation, improvement of carbon exploitation from biomass, and to reduce the contents of ash and volatile organic matter. The results showed that the surface area and pore volume of SBC under optimized conditions reached 1631 m2 g-1 and 1.312 cm3 g-1 at 700 °C, respectively, with a K/Na bi-molten salts/sludge ratio of 2:1 (K:Na = 5:5). Moreover, over fivefold the higher surface area and 43.61% amount of carbon element could be obtained, with a decrease in the mass loss rate for sludge pyrolysis of 25%. The mechanism behind the higher surface area of the SBC was identified and divided into three stages: intense dehydration and dehydrogenation caused by molten salt-enhanced polycondensation of protein and polysaccharide (200-400 °C), strongly reduced carbon-oxygen structure after deoxygenation reactions (400-600 °C), aromatization and cyclization of long-chain fatty acids triggered by deamidation of tar catalyzed by molten salts (600-900 °C). Eventually, 14.63% carbon was sequestered for the high-surface-area SBC prepared by K/Na bi-molten salts system.


Asunto(s)
Carbono , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Sales (Química) , Pirólisis , Secuestro de Carbono , Radioisótopos de Carbono
17.
Genes (Basel) ; 13(12)2022 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-36553523

RESUMEN

Miscanthus sinensis is an ornamental grass, non-food bioenergy crop, and forage with high feeding value. It can adapt to many kinds of soil conditions due to its high level of resistance to various abiotic stresses. However, a low level of seed germination restricts the utilization and application of M. sinensis. It is reported that the Homeodomain-leucine zipper (HD-Zip) gene family participates in plant growth and development and ability to cope with outside environment stresses, which may potentially regulate seed germination and stress resistance in M. sinensis. In this study, a complete overview of M. sinensis HD-Zip genes was conducted, including gene structure, conserved motifs, chromosomal distribution, and gene duplication patterns. A total of 169 members were identified, and the HD-Zip proteins were divided into four subgroups. Inter-chromosomal evolutionary analysis revealed that four pairs of tandem duplicate genes and 72 segmental duplications were detected, suggesting the possible role of gene replication events in the amplification of the M. sinensis HD-Zip gene family. There was an uneven distribution of HD-Zip genes on 19 chromosomes of M. sinensis. Also, evolutionary analysis showed that M. sinensis HD-Zip gene family members had more collinearity with monocotyledons and less with dicotyledons. The gene structure analysis showed that there were 93.5% of proteins with motif 1 and motif 4, while motif 10 was only found in group IV. Based on the cis-elements analysis, it appeared that most of the genes were related to plant growth and development, various hormones, and abiotic stress. Furthermore, qRT-PCR analysis showed that Misin06G303300.1 was significantly expressed in seed germination and Misin05G030000.1 and Misin06G303300.1 were highly expressed under chromium, salt, and drought stress. Results in this study will provide a basis for further exploring the potential role of HD-Zip genes in stress responses and genetic improvement of M. sinensis seed germination.


Asunto(s)
Germinación , Factores de Transcripción , Factores de Transcripción/metabolismo , Germinación/genética , Semillas/metabolismo , Poaceae/genética , Poaceae/metabolismo , Estrés Fisiológico/genética
18.
Environ Sci Technol ; 56(22): 16209-16220, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36165785

RESUMEN

Medium-low temperature pyrolysis is an effective method of retaining active components in sludge char. However, we found that incomplete cracking reactions resulted in residues of microplastics (MPs) remaining in the char; moreover, high levels of environmentally persistent free radicals (EPFRs) were detected in these MPs. Here, we investigated the temperature-dependent variations in the char-volatile products derived from sludge and MPs under different pyrolysis scenarios using multiple in situ probe coupling techniques and electron paramagnetic resonance spectroscopy, thereby identifying the sources of EPFRs and elucidating the corresponding formation-conversion mechanisms. The temperature was the key factor in the formation of EPFRs; in particular, in the 350-450 °C range, the abundance of EPFRs increased exponentially. Reactive EPFR readily formed in MPs with conjugated aromatic-ring structures (polyethylene terephthalate and polystyrene) at a temperature above 350 °C; EPFR concentrations were 5-17 times higher than those found in other types of polymers, and these radicals exhibited half-lives of more than 90 days. The EPFR formation mechanism could be summarized as solid-solid/solid-gas interfacial interactions between the polymers and the intermediate products from sludge pyrolysis (at 160-350 °C) and the homolytic cleavage-proton transfer occurring in the polymers themselves under the dual action of thermal induction and acid sites (at 350-450 °C). Based on the understanding of the evolution of EPFRs, temperature regulation and sludge components conditioning may be effective approaches to inhibit the formation of EPFRs in MPs, constituting reliable strategies to diminish the environmental risk associated with the byproducts of sludge pyrolysis.


Asunto(s)
Pirólisis , Aguas del Alcantarillado , Aguas del Alcantarillado/química , Microplásticos , Plásticos , Temperatura , Radicales Libres/química , Polímeros
19.
Toxicology ; 474: 153210, 2022 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-35588915

RESUMEN

Gelsemium elegans Benth. (G. elegans) showed significant biological activities, but it has the side effects of neurotoxicity, predominantly in the form of respiratory depression. Gelsenicine is the main toxic constituent of G. elegans which is highly neurotoxic to humans and animals. Although the acute neurotoxicity of gelsenicine has been widely reported, but neurotoxicity mechanisms have not been elucidated and its direct effect on nerve cells remains poorly characterized. In this study, Neuro-2a cells were used to be our object of study for determining the mechanism by which gelsenicine induced neurotoxicity. We found that gelsenicine is neurotoxic to Neuro-2a cells; indeed cell proliferation was inhibited and apoptosis was induced in a dose-dependent manner. Meanwhile, gelsenicine markedly promoted autophagy and activated autophagic flux. Additionally, promoting autophagy with rapamycin decreased apoptosis, whereas blocking autophagy with 3-methyladenine (3-MA) increased apoptosis. Furthermore, the protein kinase ribose nucleic acid (RNA)-like endoplasmic reticulum kinase (PERK)/eukaryotic initiation factor 2 alpha (eIF2α)/activating transcription factor 4 (ATF4) signaling pathway was involved in the induction of protective autophagy in Neuro-2a cells. Inhibition of PERK using small interfering RNA (siRNA) inhibited gelsenicine-induced autophagy and aggravated apoptosis. These data indicate that gelsenicine not only exhibited cytotoxicity and induced apoptosis, but it also induced protective autophagy via PERK signaling pathway to alleviate gelsenicine-mediated apoptosis in Neuro-2a cells.


Asunto(s)
Neurotoxinas , eIF-2 Quinasa , Animales , Apoptosis , Autofagia , Estrés del Retículo Endoplásmico , Alcaloides Indólicos , Neurotoxinas/toxicidad , Transducción de Señal , eIF-2 Quinasa/metabolismo
20.
Toxins (Basel) ; 14(4)2022 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-35448868

RESUMEN

Citrinin (CTN) is a mycotoxin found in crops and agricultural products and poses a serious threat to human and animal health. The aim of this study is to investigate the hepatotoxicity of CTN in mice and analyze its mechanisms from Ca2+-dependent endoplasmic reticulum (ER) stress perspective. We showed that CTN induced histopathological damage, caused ultrastructural changes in liver cells, and induced abnormal values of biochemical laboratory tests of some liver functions in mice. Treatment with CTN could induce nitric oxide (NO), malondialdehyde (MDA), and reactive oxygen species (ROS) accumulation in mice, accompanied with losses of activities of superoxide dismutase (SOD) and catalase (CAT), levels of glutathione (GSH), and capacities of total antioxidant (T-AOC), resulting in oxidative stress in mice. Furthermore, CTN treatment significantly increased Ca2+ accumulation, upregulated protein expressions of ER stress-mediated apoptosis signal protein (glucose regulated protein 78 (GRP78/BIP), C/EBP-homologous protein (CHOP), Caspase-12, and Caspase-3), and induced hepatocyte apoptosis. These adverse effects were counteracted by 4-phenylbutyric acid (4-PBA), an ER stress inhibitor. In summary, our results showed a possible underlying molecular mechanism for CTN that induced hepatocyte apoptosis in mice by the regulation of the Ca2+/ER stress signaling pathway.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Citrinina , Animales , Apoptosis , Citrinina/metabolismo , Citrinina/toxicidad , Estrés del Retículo Endoplásmico , Glutatión/metabolismo , Ratones , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...