Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 9833, 2023 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-37330578

RESUMEN

To study the characteristics of bacterial community structure in high-yield and low-yield moso bamboo (Phyllostachys edulis) forests, we collected bamboo rhizome, rhizome root, stem, leaf, rhizosphere soil, and non-rhizosphere soil from high- and low-yield forests in Yong'an City and Jiangle County of Fujian Province, China. The genomic DNA of the samples was extracted, sequenced and analyzed. The results show that: the common differences between the high-yield and low-yield P. edulis forest samples in the two regions were mainly in bacterial community compositions in the bamboo rhizome, rhizome root, and soil samples. Differences in the bacterial community compositions in the stem and leaf samples were insignificant. The bacterial species and diversity in rhizome root and rhizosphere soil of high-yield P. edulis forests were less than those of low-yield forests. The relative abundance of Actinobacteria and Acidobacteria in rhizome root samples of high-yield forests was higher than that in low-yield forests. The relative abundance of Rhizobiales and Burkholderiales in bamboo rhizome samples in high-yield forests was higher than that in low-yield forests. The relative abundance of Bradyrhizobium in bamboo rhizome samples in high-yield forests was higher than that in low-yield forests in the two regions. The change of bacterial community composition in P. edulis stems and leaves showed little correlation with high- or low-yields of P. edulis forests. Notably, the bacterial community composition of the rhizome root system was correlated with the high yield of bamboo. This study provides a theoretical basis for using of microbes to enhance the yields of P. edulis forests.


Asunto(s)
Bosques , Poaceae , Bacterias/genética , Acidobacteria , Suelo/química
2.
PLoS One ; 17(1): e0262909, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35100276

RESUMEN

Rhizosphere and endophytic microbiota significantly affect plant growth and development by influencing nutrient uptake and stress tolerance. Herein, root and rhizosphere soil of Acacia species were collected and analyzed to compare the structural differences of the rhizosphere and root endophytic bacterial communities. High-throughput 16S rRNA gene sequencing technology was employed to analyze the rhizosphere and root endophytic bacterial communities. A total of 4249 OTUs were identified following sequence analysis. The rhizosphere soil contained significantly more OTUs than the root soil. Principal component analysis (PCA) and hierarchical cluster analysis indicated that bacterial communities exhibited significant specificity in the rhizosphere and root soil of different Acacia species. The most dominant phylum in the rhizosphere soil was Acidobacteria, followed by Proteobacteria and Actinobacteria, whereas the dominant phylum in the root soil was Proteobacteria, followed by Actinobacteria and Acidobacteria. Among the various Acacia species, specific bacterial communities displayed different abundance. We systematically described the core bacteria in the rhizosphere and root endophytic bacterial communities and predicted their relevant functions. The type and abundance of specific bacteria were correlated with the nutrient absorption and metabolism of the Acacia species. This study addresses the complex host-microbe interactions and explores the rhizosphere and root bacterial community structure of different Acacia species. These results provide new insights into the role of rhizosphere and root endophytic bacterial communities on the growth and reproduction of Acacia, thus informing future efforts towards sustainable development and utilization of Acacia.


Asunto(s)
Acacia/microbiología , Bacterias , Raíces de Plantas/microbiología , Rizosfera , Microbiología del Suelo , Bacterias/clasificación , Bacterias/genética
3.
Sci Rep ; 11(1): 1574, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33452327

RESUMEN

The plant microbiota play a key role in plant productivity, nutrient uptake, resistance to stress and flowering. The flowering of moso bamboo has been a focus of study. The mechanism of flowering is related to nutrient uptake, temperature, hormone balance and regulation of key genes. However, the connection between microbiota of moso bamboo and its flowering is unknown. In this study, samples of rhizosphere soil, rhizomes, roots and leaves of flowering and nonflowering plants were collected, and 16S rRNA amplicon Illumina sequencing was utilized to separate the bacterial communities associated with different flowering stages of moso bamboo. We identified 5442 OTUs, and the number of rhizosphere soil OTUs was much higher than those of other samples. Principal component analysis (PCA) and hierarchical clustering (Bray Curtis dis) analysis revealed that the bacterial microorganisms related to rhizosphere soil and endophytic tissues of moso bamboo differed significantly from those in bulk soil and rhizobacterial and endosphere microbiomes. In addition, the PCA analyses of root and rhizosphere soil revealed different structures of microbial communities between bamboo that is flowering and not flowering. Through the analysis of core microorganisms, it was found that Flavobacterium, Bacillus and Stenotrophomonas played an important role in the absorption of N elements, which may affect the flowering time of moso bamboo. Our results delineate the complex host-microbe interactions of this plant. We also discuss the potential influence of bacterial microbiome in flowering, which can provide a basis for the development and utilization of moso bamboo.


Asunto(s)
Rizoma/microbiología , Sasa/microbiología , Bacillus/genética , Bacillus/metabolismo , Bacterias/genética , Bacterias/metabolismo , Flavobacterium/genética , Flavobacterium/metabolismo , Flores/genética , Flores/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Microbiota/genética , Nutrientes/metabolismo , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología , Poaceae/genética , Poaceae/microbiología , ARN Ribosómico 16S/genética , Rizosfera , Sasa/genética , Suelo/química , Microbiología del Suelo , Stenotrophomonas/genética , Stenotrophomonas/metabolismo
4.
Arch Microbiol ; 202(1): 181-189, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31562551

RESUMEN

The structure and diversity of microbial communities in the leaves of Cinnamomum camphora at different growth stages were studied by high-throughput sequencing. Moreover, the relationships between microbial communities and borneol content were analyzed in this paper. The results indicated that the community structure of endophytic bacteria in C. camphora exhibited temporal variations, with the microbial diversity presented as follows: T1 (low content period) > T3 (peak period) > T2 (small peak period). The population of endophytic bacteria and the ratio of primary metabolism in the leaves of C. camphora were T2 > T1 > T3, while the metabolic intensity of endophytic bacterial terpenoids and polyketides was T3 > T2 > T1, which had the same trend as borneol content in C. camphora. The metabolic ratio of terpenoids and polyketides in T3 was 7.44% higher than that in T1, while that in T2 was 4.10% higher than that in T1. The abundance and diversity of Clostridium_sensu_stricto_1, Ochrobactrum, Escherichia-Shigella, Pseudomonas, and Massilia significantly promoted the content of terpenoids in C. camphora. Together, those results provide the first evidence that borneol content and potential metabolic intensity in leaves of C. camphora greatly depend on microbial communities composition and diversity.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Biodiversidad , Cinnamomum camphora/microbiología , Hojas de la Planta/microbiología , Bacterias/clasificación , Cinnamomum camphora/química , Cinnamomum camphora/metabolismo , Hojas de la Planta/metabolismo
5.
Arch Microbiol ; 200(6): 921-927, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29525826

RESUMEN

The research results of the growth-promoting effects of endophytic bacteria on Phyllostachys edulis indicated that the growth-promoting endophytic bacteria could improve photosynthesis in P. edulis leaves. The photosynthetic rate, transpiration rate, and the stomatal conductance in P. edulis treated with endophytic bacteria were all higher than in the control group. Endophytic bacteria could also increase the chlorophyll content and the protective enzyme activities in P. edulis, improving their reactions to the adverse environmental conditions. Through injection treatments with growth-promoting endophytic bacteria, the catalase, superoxide dismutase (SOD), peroxidase activity, soluble protein content, and soluble sugar content in P. edulis were all higher than in the control group, except for the malondialdehyde content, which was lower than in the control group.


Asunto(s)
Bacterias/aislamiento & purificación , Bambusa/microbiología , Endófitos/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Bambusa/crecimiento & desarrollo , Bambusa/metabolismo , Catalasa/metabolismo , Clorofila/metabolismo , Endófitos/clasificación , Endófitos/genética , Malondialdehído/metabolismo , Fotosíntesis , Proteínas de Plantas/metabolismo , Superóxido Dismutasa/metabolismo
6.
Acta Biol Hung ; 66(4): 449-59, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26616376

RESUMEN

Endophytic phosphorus- and potassium-solubilizing bacteria were screened from the root, rhizome, stem, and leaves of Moso Bamboo, and their diversity was analyzed using their 16S rDNA sequences. Twenty endophytic phosphorus and potassium-solubilizing bacteria were screened from 82 bamboo plants, among which the CT-B09-2, WYS-A01-1 and JL-B06 had higher activities in decomposing organophosphates. The three species showed a decomposition diameter/colony diameter (D/d) of 5.05, 4.19 and 2.95, respectively, and a solubilizing activity of 81.77 mg/L, 77.85 mg/L and 63.69 mg/L, respectively. JL-B06, WYS-A01-1 and CT-B09-2 had higher activities in decomposing inorganic phosphorus, with a decomposition diameter/colony diameter (D/d) of 2.34, 2.12 and 1.82, respectively, and a solubilizing activity of 30.58 mg/L, 38.89 mg/L and 48.35 mg/L, respectively. CT-B21, WYS-A03-1 and JL-B06 had higher activities in decomposing potassium, with a decomposition diameter/colony diameter (D/d) of 3.37, 4.84 and 4.33, respectively, and a solubilizing activity of 2.81 mg/L, 2.54 mg/L and 2.46 mg/L, respectively. The 16S rDNA sequence analysis showed that the 20 phosphorus- and potassium-solubilizing bacteria belong to 14 species from 10 genera, and mainly consist of Alcaligenes spp., Enterobacter spp. and Bacillus spp. Our results demonstrate the abundant diversity of endophytic phosphorus- and potassiumsolubilizing bacteria in Moso Bamboo.


Asunto(s)
Bacterias/clasificación , Fósforo/metabolismo , Poaceae/microbiología , Potasio/metabolismo , Bacterias/metabolismo , Biodiversidad , Endófitos/clasificación , Endófitos/metabolismo , Filogenia , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...