Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int Immunopharmacol ; 134: 111997, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38759370

RESUMEN

Cystitis is a common disease closely associated with urinary tract infections, and the specific mechanisms underlying its occurrence and development remain largely unknown. In this study, we discovered that IGFBP1 suppresses the occurrence and development of cystitis by stabilizing the expression of Umod through m6A modification, inhibiting the NF-κB and ERK signaling pathways. Initially, we obtained a bladder cystitis-related transcriptome dataset from the GEO database and identified the characteristic genes Umod and IGFBP1. Further exploration revealed that IGFBP1 in primary cells of cystitis can stabilize the expression of Umod through m6A modification. Overexpression of both IGFBP1 and Umod significantly inhibited cell apoptosis and the NF-κB and ERK signaling pathways, ultimately suppressing the production of pro-inflammatory factors. Finally, using a rat model of cystitis, we demonstrated that overexpression of IGFBP1 stabilizes the expression of Umod, inhibits the NF-κB and ERK signaling pathways, reduces the production of pro-inflammatory factors, and thus prevents the occurrence and development of cystitis. Our study elucidates the crucial role of IGFBP1 and Umod in cystitis and reveals the molecular mechanisms that inhibit the occurrence and development of cystitis. This research holds promise for offering new insights into the treatment of cystitis in the future.


Asunto(s)
Cistitis , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina , Sistema de Señalización de MAP Quinasas , FN-kappa B , Ratas Sprague-Dawley , Animales , Femenino , Humanos , Ratas , Apoptosis , Cistitis/metabolismo , Modelos Animales de Enfermedad , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/genética , FN-kappa B/metabolismo , Vejiga Urinaria/patología , Vejiga Urinaria/metabolismo
2.
Surgery ; 167(1): 87-93, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31521320

RESUMEN

BACKGROUND: Anaplastic thyroid cancer is an aggressive and fatal malignancy. Many advanced cancers are characterized by glucose dependency, leading to oxidative stress and cellular proliferation. Therefore, we sought to determine if a low glucose environment (in vitro) or a ketogenic diet (in vivo) could inhibit anaplastic thyroid cancer tumor growth when combined with the antioxidant N-acetylcysteine. METHODS: In vivo, nude mice were injected with the anaplastic thyroid cancer cell line 8505C (n = 6/group). Group 1 was fed a standard diet; Group 2 was fed a ketogenic diet; Group 3 was given standard diet with N-acetylcysteine (40 mM in the drinking water); and Group 4 was fed ketogenic diet with N-acetylcysteine. Tumor volumes, ketones, and glucose were measured. H&E stains and immunohistochemistry for Ki-67 and Caspase 3 were performed on the tumors. In vitro, 8505C cells were cultured in high glucose (25 mM), low glucose (3 mM), high glucose plus N-acetylcysteine (200 uM), or low glucose plus N-acetylcysteine for 96 hours. We performed CyQUANT proliferation (Thermo Fisher Scientific, Waltham, MA), Seahorse glycolytic stress (Agilent, Santa Clara, CA), and reactive oxidative stress assays. RESULTS: Ketogenic diet plus N-acetylcysteine decreased in vivo tumor volume compared to standard diet (22.5 ± 12.4 mm3 vs 147 ± 54.4 mm3, P < .05) and standard diet plus N-acetylcysteine (P < .05). Blood ketone levels were significantly higher for the mice in the ketogenic diet group compared to standard diet (1.74 mmol/L vs 0.38 mmol/L at week 5, P < .001). However, blood glucose levels were not significantly different between ketogenic diet and standard diet groups. Cells cultured in low glucose plus N-acetylcysteine had significantly reduced proliferation compared to high glucose (98.1 ± 5.0 relative fluorescence units vs 157.8 ± 2.1 relative fluorescence units, P < .001). Addition of N-acetylcysteine to low glucose lowered glycolysis function compared to high glucose (39.0 ± 2.2 mpH/min/cell vs 89.1 ± 13.2 mpH/min/cell, P < .001) and high glucose plus N-acetylcysteine (37.4 ± 2.5 mpH/min/cell vs 70.3 ± 3.3 mpH/min/cell, P < .001). Low glucose plus N-acetylcysteine decreased reactive oxidative stress compared to high glucose (119 ± 34.7 relative fluorescence units vs 277 ± 16.0 relative fluorescence units, P = .014). CONCLUSION: The combination of a ketogenic diet or glucose restriction with the antioxidant- N-acetylcysteine significantly reduced tumor growth in vivo and in vitro. Further studies are warranted to explore these metabolic therapies in anaplastic thyroid cancer.


Asunto(s)
Acetilcisteína/administración & dosificación , Dieta Cetogénica , Depuradores de Radicales Libres/administración & dosificación , Carcinoma Anaplásico de Tiroides/terapia , Neoplasias de la Tiroides/terapia , Administración Oral , Animales , Línea Celular Tumoral , Femenino , Glucosa/metabolismo , Humanos , Ratones , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Carcinoma Anaplásico de Tiroides/metabolismo , Carcinoma Anaplásico de Tiroides/patología , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Elife ; 82019 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-31120418

RESUMEN

A small subset of interneurons that are generated earliest as pioneer neurons are the first cohort of neurons that enter the neocortex. However, it remains largely unclear whether these early-generated interneurons (EGIns) predominantly regulate neocortical circuit formation. Using inducible genetic fate mapping to selectively label EGIns and pseudo-random interneurons (pRIns), we found that EGIns exhibited more mature electrophysiological and morphological properties and higher synaptic connectivity than pRIns in the somatosensory cortex at early postnatal stages. In addition, when stimulating one cell, the proportion of EGIns that influence spontaneous network synchronization is significantly higher than that of pRIns. Importantly, toxin-mediated ablation of EGIns after birth significantly reduce spontaneous network synchronization and decrease inhibitory synaptic formation during the first postnatal week. These results suggest that EGIns can shape developing networks and may contribute to the refinement of neuronal connectivity before the establishment of the adult neuronal circuit.


Asunto(s)
Animales Recién Nacidos , Interneuronas/fisiología , Red Nerviosa/crecimiento & desarrollo , Corteza Somatosensorial/crecimiento & desarrollo , Animales , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...