Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Invest New Drugs ; 42(1): 106-115, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38198061

RESUMEN

Gastric cancer (GC) is widely regarded as one of the toughest cancers to treat. Trastuzumab, which targets the human epidermal growth factor receptor 2 (HER2) for GC treatment, has demonstrated clinical success. However, these patients have a high likelihood of developing resistance. Additionally, Claudin18.2 (CLDN18.2) is a promising emerging target for GC treatment. Therefore, therapies that simultaneously target both HER2 and CLDN18.2 targets are of great significance. Here, we constructed a bispecific antibody targeting both HER2 and CLDN18.2 (HC-2G4S; BsAb), which displayed satisfactory purity, thermostability and enhancing antibody-dependent cell-mediated cytotoxicity (ADCC) activity. In a tumor spheroids model of GC, BsAb demonstrated greater therapeutic efficacy than monoclonal antibodies (mAb) or combination treatment strategies. We propose that the enhanced anti-tumor potency of BsAbs in vivo is due to the monovalent binding of single-chain antibodies to more targets due to weaker affinity, resulting in a more potent immune effect function. Therefore, HC-2G4S could be a productive agent for treating GC that is HER2-positive, CLDN18.2-positive, or both, with the potential to overcome trastuzumab resistance and provide significant clinical benefits and expanded indications.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Línea Celular Tumoral , Trastuzumab/farmacología , Trastuzumab/uso terapéutico , Receptor ErbB-2/metabolismo , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Biespecíficos/farmacología , Anticuerpos Biespecíficos/uso terapéutico , Claudinas
2.
Nano Res ; 12: 273-279, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31832124

RESUMEN

Theranostic nanoparticles are integrated systems useful for simultaneous diagnosis and imaging guided delivery of therapeutic drugs, with wide ranging potential applications in the clinic. Here we developed a theranostic nanoparticle (~ 24 nm size by dynamic light scattering) p-FE-PTX-FA based on polymeric micelle encapsulating an organic dye (FE) fluorescing in the 1,000-1,700 nm second near-infrared (NIR-II) window and an anti-cancer drug paclitaxel. Folic acid (FA) was conjugated to the nanoparticles to afford specific binding to molecular folate receptors on murine breast cancer 4T1 tumor cells. In vivo, the nanoparticles accumulated in 4T1 tumor through both passive and active targeting effect. Under an 808 nm laser excitation, fluorescence detection above 1,300 nm afforded a large Stokes shift, allowing targeted molecular imaging tumor with high signal to background ratios, reaching a high tumor to normal tissue signal ratio (T/NT) of (20.0 ± 2.3). Further, 4T1 tumors on mice were completed eradicated by paclitaxel released from p-FE-PTA-FA within 20 days of the first injection. Pharmacokinetics and histology studies indicated p-FE-PTX-FA had no obvious toxic side effects to major organs. This represented the first NIR-II theranostic agent developed.

3.
Proc Natl Acad Sci U S A ; 115(26): 6590-6595, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29891702

RESUMEN

With suppressed photon scattering and diminished autofluorescence, in vivo fluorescence imaging in the 1,500- to 1,700-nm range of the near-IR (NIR) spectrum (NIR-IIb window) can afford high clarity and deep tissue penetration. However, there has been a lack of NIR-IIb fluorescent probes with sufficient brightness and aqueous stability. Here, we present a bright fluorescent probe emitting at ∼1,600 nm based on core/shell lead sulfide/cadmium sulfide (CdS) quantum dots (CSQDs) synthesized in organic phase. The CdS shell plays a critical role of protecting the lead sulfide (PbS) core from oxidation and retaining its bright fluorescence through the process of amphiphilic polymer coating and transferring to water needed for imparting aqueous stability and compatibility. The resulting CSQDs with a branched PEG outer layer exhibited a long blood circulation half-life of 7 hours and enabled through-skin, real-time imaging of blood flows in mouse vasculatures at an unprecedented 60 frames per second (fps) speed by detecting ∼1,600-nm fluorescence under 808-nm excitation. It also allowed through-skin in vivo confocal 3D imaging of tumor vasculatures in mice with an imaging depth of ∼1.2 mm. The PEG-CSQDs accumulated in tumor effectively through the enhanced permeation and retention effect, affording a high tumor-to-normal tissue ratio up to ∼32 owing to the bright ∼1,600-nm emission and nearly zero autofluorescence background resulting from a large ∼800-nm Stoke's shift. The aqueous-compatible CSQDs are excreted through the biliary pathway without causing obvious toxicity effects, suggesting a useful class of ∼1,600-nm emitting probes for biomedical research.


Asunto(s)
Colorantes Fluorescentes , Imagenología Tridimensional/métodos , Microscopía Intravital/métodos , Microscopía Fluorescente/métodos , Imagen Óptica/métodos , Puntos Cuánticos , Adenocarcinoma/irrigación sanguínea , Adenocarcinoma/secundario , Animales , Neoplasias del Colon/patología , Estabilidad de Medicamentos , Arteria Femoral/ultraestructura , Vena Femoral/ultraestructura , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/farmacocinética , Colorantes Fluorescentes/toxicidad , Semivida , Miembro Posterior/irrigación sanguínea , Microscopía Intravital/instrumentación , Plomo/química , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal/instrumentación , Microscopía Confocal/métodos , Microscopía Electrónica , Microscopía Fluorescente/instrumentación , Imagen Óptica/instrumentación , Puntos Cuánticos/análisis , Puntos Cuánticos/química , Puntos Cuánticos/toxicidad , Sulfuros/química , Grabación en Video
4.
Adv Mater ; 30(22): e1800106, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29682821

RESUMEN

In vivo molecular imaging of tumors targeting a specific cancer cell marker is a promising strategy for cancer diagnosis and imaging guided surgery and therapy. While targeted imaging often relies on antibody-modified probes, peptides can afford targeting probes with small sizes, high penetrating ability, and rapid excretion. Recently, in vivo fluorescence imaging in the second near-infrared window (NIR-II, 1000-1700 nm) shows promise in reaching sub-centimeter depth with microscale resolution. Here, a novel peptide (named CP) conjugated NIR-II fluorescent probe is reported for molecular tumor imaging targeting a tumor stem cell biomarker CD133. The click chemistry derived peptide-dye (CP-IRT dye) probe afforded efficient in vivo tumor targeting in mice with a high tumor-to-normal tissue signal ratio (T/NT > 8). Importantly, the CP-IRT probes are rapidly renal excreted (≈87% excretion within 6 h), in stark contrast to accumulation in the liver for typical antibody-dye probes. Further, with NIR-II emitting CP-IRT probes, urethra of mice can be imaged fluorescently for the first time noninvasively through intact tissue. The NIR-II fluorescent, CD133 targeting imaging probes are potentially useful for human use in the clinic for cancer diagnosis and therapy.


Asunto(s)
Péptidos/química , Animales , Línea Celular Tumoral , Química Clic , Colorantes Fluorescentes , Ratones , Imagen Molecular , Espectroscopía Infrarroja Corta
5.
Nat Commun ; 9(1): 1171, 2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29563581

RESUMEN

Fluorescence imaging of biological systems in the second near-infrared (NIR-II, 1000-1700 nm) window has shown promise of high spatial resolution, low background, and deep tissue penetration owing to low autofluorescence and suppressed scattering of long wavelength photons. Here we develop a bright organic nanofluorophore (named p-FE) for high-performance biological imaging in the NIR-II window. The bright NIR-II >1100 nm fluorescence emission from p-FE affords non-invasive in vivo tracking of blood flow in mouse brain vessels. Excitingly, p-FE enables one-photon based, three-dimensional (3D) confocal imaging of vasculatures in fixed mouse brain tissue with a layer-by-layer imaging depth up to ~1.3 mm and sub-10 µm high spatial resolution. We also perform in vivo two-color fluorescence imaging in the NIR-II window by utilizing p-FE as a vasculature imaging agent emitting between 1100 and 1300 nm and single-walled carbon nanotubes (CNTs) emitting above 1500 nm to highlight tumors in mice.


Asunto(s)
Encéfalo/diagnóstico por imagen , Colorantes Fluorescentes/farmacocinética , Imagenología Tridimensional/métodos , Nanotubos de Carbono/química , Imagen Óptica/métodos , Espectroscopía Infrarroja Corta/métodos , Animales , Vasos Sanguíneos/diagnóstico por imagen , Vasos Sanguíneos/fisiología , Encéfalo/irrigación sanguínea , Línea Celular Tumoral , Circulación Cerebrovascular/fisiología , Femenino , Colorantes Fluorescentes/síntesis química , Imagenología Tridimensional/instrumentación , Inyecciones Subcutáneas , Glándulas Mamarias Animales/irrigación sanguínea , Glándulas Mamarias Animales/diagnóstico por imagen , Glándulas Mamarias Animales/patología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Trasplante de Neoplasias , Imagen Óptica/instrumentación , Espectroscopía Infrarroja Corta/instrumentación
6.
Adv Mater ; 30(13): e1705799, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29446156

RESUMEN

Greatly reduced scattering in the second near-infrared (NIR-II) region (1000-1700 nm) opens up many new exciting avenues of bioimaging research, yet NIR-II fluorescence imaging is mostly implemented by using nontargeted fluorophores or wide-field imaging setups, limiting the signal-to-background ratio and imaging penetration depth due to poor specific binding and out-of-focus signals. A newly developed high-performance NIR-II bioconjugate enables targeted imaging of a specific organ in the living body with high quality. Combined with a home-built NIR-II confocal set-up, the enhanced imaging technique allows 900 µm-deep 3D organ imaging without tissue clearing techniques. Bioconjugation of two hormones to nonoverlapping NIR-II fluorophores facilitates two-color imaging of different receptors, demonstrating unprecedented multicolor live molecular imaging across the NIR-II window. This deep tissue imaging of specific receptors in live animals allows development of noninvasive molecular imaging of multifarious models of normal and neoplastic organs in vivo, beyond the traditional visible to NIR-I range. The developed NIR-II fluorescence microscopy will become a powerful imaging technique for deep tissue imaging without any physical sectioning or clearing treatment of the tissue.

7.
Adv Funct Mater ; 28(36)2018 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-31327961

RESUMEN

Real-time optical imaging is a promising approach for visualizing in vivo hemodynamics and vascular structure in mice with experimentally induced peripheral arterial disease (PAD). We report the application of a novel fluorescence-based all-optical imaging approach in the near-infrared IIb (NIR-IIb, 1500-1700 nm emission) window, for imaging hindlimb microvasculature and blood perfusion in a mouse model of PAD. In phantom studies, lead sulfide/cadmium sulfide (PbS/CdS) quantum dots showed better retention of image clarity, in comparison with single-walled nanotube (SWNT) NIR-IIa (1000-1400nm) dye, at varying depths of penetration. When systemically injected to mice, PbS/CdS demonstrated improved clarity of the vasculature, compared to SWNTs, as well as higher spatial resolution than in vivo microscopic computed tomography. In a mouse model of PAD, NIR-IIb imaging of the ischemic hindlimb vasculature showed significant improvement in blood perfusion over the course of 10 days (P<0.05), as well as a significant increase in microvascular density over the first 7 days after induction of PAD. In conclusion, NIR-IIb imaging of PbS/CdS vascular contrast agent is a useful multi-functional imaging approach for high spatial resolution imaging of the microvasculature and quantification of blood perfusion recovery.

8.
Nat Commun ; 8(1): 737, 2017 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-28963467

RESUMEN

In vivo fluorescence imaging in the near-infrared region between 1500-1700 nm (NIR-IIb window) affords high spatial resolution, deep-tissue penetration, and diminished auto-fluorescence due to the suppressed scattering of long-wavelength photons and large fluorophore Stokes shifts. However, very few NIR-IIb fluorescent probes exist currently. Here, we report the synthesis of a down-conversion luminescent rare-earth nanocrystal with cerium doping (Er/Ce co-doped NaYbF4 nanocrystal core with an inert NaYF4 shell). Ce doping is found to suppress the up-conversion pathway while boosting down-conversion by ~9-fold to produce bright 1550 nm luminescence under 980 nm excitation. Optimization of the inert shell coating surrounding the core and hydrophilic surface functionalization minimize the luminescence quenching effect by water. The resulting biocompatible, bright 1550 nm emitting nanoparticles enable fast in vivo imaging of blood vasculature in the mouse brain and hindlimb in the NIR-IIb window with short exposure time of 20 ms for rare-earth based probes.Fluorescence imaging in the near-infrared window between 1500-1700 nm (NIR-IIb window) offers superior spatial resolution and tissue penetration depth, but few NIR-IIb probes exist. Here, the authors synthesize rare earth down-converting nanocrystals as promising fluorescent probes for in vivo imaging in this spectral region.


Asunto(s)
Metales de Tierras Raras/química , Nanopartículas/química , Animales , Vasos Sanguíneos/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Cerio/química , Erbio/química , Luminiscencia , Masculino , Ratones , Ratones Endogámicos C57BL , Espectroscopía Infrarroja Corta/instrumentación , Espectroscopía Infrarroja Corta/métodos
9.
Chem Sci ; 8(5): 3703-3711, 2017 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-28626555

RESUMEN

In vivo imaging of hormone receptors provides the opportunity to visualize target tissues under hormonal control in live animals. Detecting longer-wavelength photons in the second near-infrared window (NIR-II, 1000-1700 nm) region affords reduced photon scattering in tissues accompanied by lower autofluorescence, leading to higher spatial resolution at up to centimeter tissue penetration depths. Here, we report the conjugation of a small molecular NIR-II fluorophore CH1055 to a follicle stimulating hormone (FSH-CH) for imaging ovaries and testes in live mice. After exposure to FSH-CH, specific NIR-II signals were found in cultured ovarian granulosa cells containing FSH receptors. Injection of FSH-CH allowed live imaging of ovarian follicles and testicular seminiferous tubules in female and male adult mice, respectively. Using prepubertal mice, NIR-II signals were detected in ovaries containing only preantral follicles. Resolving earlier controversies regarding the expression of FSH receptors in cultured osteoclasts, we detected for the first time specific FSH receptor signals in bones in vivo. The present imaging of FSH receptors in live animals using a ligand-conjugated NIR-II fluorophore with low cell toxicity and rapid clearance allows the development of non-invasive molecular imaging of diverse hormonal target cells in vivo.

10.
Proc Natl Acad Sci U S A ; 114(5): 962-967, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096386

RESUMEN

Fluorescence imaging multiplicity of biological systems is an area of intense focus, currently limited to fluorescence channels in the visible and first near-infrared (NIR-I; ∼700-900 nm) spectral regions. The development of conjugatable fluorophores with longer wavelength emission is highly desired to afford more targeting channels, reduce background autofluorescence, and achieve deeper tissue imaging depths. We have developed NIR-II (1,000-1,700 nm) molecular imaging agents with a bright NIR-II fluorophore through high-efficiency click chemistry to specific molecular antibodies. Relying on buoyant density differences during density gradient ultracentrifugation separations, highly pure NIR-II fluorophore-antibody conjugates emitting ∼1,100 nm were obtained for use as molecular-specific NIR-II probes. This facilitated 3D staining of ∼170-µm histological brain tissues sections on a home-built confocal microscope, demonstrating multicolor molecular imaging across both the NIR-I and NIR-II windows (800-1,700 nm).


Asunto(s)
Química Encefálica , Encéfalo/ultraestructura , Química Clic , Técnica del Anticuerpo Fluorescente Directa/métodos , Colorantes Fluorescentes/análisis , Espectroscopía Infrarroja Corta/métodos , Animales , Biotinilación , Carcinoma de Células Escamosas/ultraestructura , Cetuximab/análisis , Imagenología Tridimensional , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Microscopía Confocal/métodos , Estructura Molecular , Nanotubos , Resonancia Magnética Nuclear Biomolecular , Estreptavidina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...