Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Magn Reson Imaging ; 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38390981

RESUMEN

BACKGROUND: Different placenta accreta spectrum (PAS) subtypes pose varying surgical risks to the parturient. Machine learning model has the potential to diagnose PAS disorder. PURPOSE: To develop a cascaded deep semantic-radiomic-clinical (DRC) model for diagnosing PAS and its subtypes based on T2-weighted MRI. STUDY TYPE: Retrospective. POPULATION: 361 pregnant women (mean age: 33.10 ± 4.37 years), suspected of PAS, divided into segment training cohort (N = 40), internal training cohort (N = 139), internal testing cohort (N = 60), and external testing cohort (N = 122). FIELD STRENGTH/SEQUENCE: Coronal T2-weighted sequence at 1.5 T and 3.0 T. ASSESSMENT: Clinical characteristics such as history of uterine surgery and the presence of placenta previa, complete placenta previa and dangerous placenta previa were extracted from clinical records. The DRC model (incorporating radiomics, deep semantic features, and clinical characteristics), a cumulative radiological score method performed by radiologists, and other models (including a radiomics and clinical, the clinical, radiomics and deep learning models) were developed for PAS disorder diagnosing (existence of PAS and its subtypes). STATISTICAL TESTS: AUC, ACC, Student's t-test, the Mann-Whitney U test, chi-squared test, dice coefficient, intraclass correlation coefficients, least absolute shrinkage and selection operator regression, receiver operating characteristic curve, calibration curve with the Hosmer-Lemeshow test, decision curve analysis, DeLong test, and McNemar test. P < 0.05 indicated a significant difference. RESULTS: In PAS diagnosis, the DRC-1 outperformed than other models (AUC = 0.850 and 0.841 in internal and external testing cohorts, respectively). In PAS subtype classification (abnormal adherent placenta and abnormal invasive placenta), DRC-2 model performed similarly with radiologists (P = 0.773 and 0.579 in the internal testing cohort and P = 0.429 and 0.874 in the external testing cohort, respectively). DATA CONCLUSION: The DRC model offers efficiency and high diagnostic sensitivity in diagnosis, aiding in surgical planning. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.

2.
Comput Methods Programs Biomed ; 233: 107466, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36907040

RESUMEN

BACKGROUND AND OBJECTIVES: Radiomics and deep learning are two popular technologies used to develop computer-aided detection and diagnosis schemes for analysing medical images. This study aimed to compare the effectiveness of radiomics, single-task deep learning (DL) and multi-task DL methods in predicting muscle-invasive bladder cancer (MIBC) status based on T2-weighted imaging (T2WI). METHODS: A total of 121 tumours (93 for training, from Centre 1; 28 for testing, from Centre 2) were included. MIBC was confirmed with pathological examination. A radiomics model, a single-task model, and a multi-task model based on T2WI were constructed in the training cohort with five-fold cross-validation, and validation was conducted in the external test cohort. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic performance of each model. DeLong's test and a permutation test were used to compare the performance of the models. RESULTS: The area under the ROC curve (AUC) values of the radiomics, single-task and multi-task models in the training cohort were: 0.920, 0.933 and 0.932, respectively; and were 0.844, 0.884 and 0.932, respectively, in the test cohort. The multi-task model achieved better performance in the test cohort than did the other models. No statistically significant differences in AUC values and Kappa coefficients were observed between pairwise models, in either the training or test cohorts. According to the Grad-CAM feature visualization results, the multi-task model focused more on the diseased tissue area in some samples of the test cohort compared with the single-task model. CONCLUSIONS: The T2WI-based radiomics, single-task, and multi-task models all exhibited good diagnostic performance in preoperatively predicting MIBC, in which the multi-task model had the best diagnostic performance. Compared with the radiomics method, our multi-task DL method had the advantage of saving time and effort. Compared with the single-task DL method, our multi-task DL method had the advantage of being more lesion-focused and more reliable for clinical reference.


Asunto(s)
Aprendizaje Profundo , Neoplasias de la Vejiga Urinaria , Humanos , Neoplasias de la Vejiga Urinaria/diagnóstico por imagen , Imagen por Resonancia Magnética , Curva ROC , Músculos/diagnóstico por imagen , Estudios Retrospectivos
3.
Eur Radiol ; 33(4): 2699-2709, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36434397

RESUMEN

OBJECTIVES: To compare the diagnostic performance of a novel deep learning (DL) method based on T2-weighted imaging with the vesical imaging-reporting and data system (VI-RADS) in predicting muscle invasion in bladder cancer (MIBC). METHODS: A total of 215 tumours (129 for training and 31 for internal validation, centre 1; 55 for external validation, centre 2) were included. MIBC was confirmed by pathological examination. VI-RADS scores were provided by two groups of radiologists (readers 1 and readers 2) independently. A deep convolutional neural network was constructed in the training set, and validation was conducted on the internal and external validation sets. ROC analysis was performed to evaluate the performance for MIBC diagnosis. RESULTS: The AUCs of the DL model, readers 1, and readers 2 were as follows: in the internal validation set, 0.963, 0.843, and 0.852, respectively; in the external validation set, 0.861, 0.808, and 0.876, respectively. The accuracy of the DL model in the tumours scored VI-RADS 2 or 3 was higher than that of radiologists in the external validation set: for readers 1, 0.886 vs. 0.600, p = 0.006; for readers 2, 0.879 vs. 0.636, p = 0.021. The average processing time (38 s and 43 s in two validation sets) of the DL method was much shorter than the readers, with a reduction of over 100 s in both validation sets. CONCLUSIONS: Compared to radiologists using VI-RADS, the DL method had a better diagnostic performance, shorter processing time, and robust generalisability, indicating good potential for diagnosing MIBC. KEY POINTS: • The DL model shows robust performance for MIBC diagnosis in both internal and external validation. • The diagnostic performance of the DL model in the tumours scored VI-RADS 2 or 3 is better than that obtained by radiologists using VI-RADS. • The DL method shows potential in the preoperative assessment of MIBC.


Asunto(s)
Aprendizaje Profundo , Neoplasias de la Vejiga Urinaria , Humanos , Imagen por Resonancia Magnética/métodos , Neoplasias de la Vejiga Urinaria/diagnóstico por imagen , Neoplasias de la Vejiga Urinaria/patología , Vejiga Urinaria/patología , Músculos/patología , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...