Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
1.
J Chem Phys ; 161(2)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-38973762

RESUMEN

Electrocatalytic CO2 reduction reaction (CO2RR) for CH4 production presents a promising strategy to address carbon neutrality, and the incorporation of a second metal has been proven effective in enhancing catalyst performance. Nevertheless, there remains limited comprehension regarding the fundamental factors responsible for the improved performance. Herein, the critical role of Pd in electrocatalytic CO2 reduction to CH4 on Cu-based catalysts has been revealed at a molecular level using in situ surface-enhanced Raman spectroscopy (SERS). A "borrowing" SERS strategy has been developed by depositing Cu-Pd overlayers on plasmonic Au nanoparticles to achieve the in situ monitoring of the dynamic change of the intermediate during CO2RR. Electrochemical tests demonstrate that Pd incorporation significantly enhances selectivity toward CH4 production, and the Faradaic efficiency (FE) of CH4 is more than two times higher than that for the catalysts without Pd. The key intermediates, including *CO2-, *CO, and *OH, have been directly identified under CO2RR conditions, and their evolution with the electrochemical environments has been determined. It is found that Pd incorporation promotes the activation of both CO2 and H2O molecules and accelerates the formation of abundant active *CO and hydrogen species, thus enhancing the CH4 selectivity. This work offers fundamental insights into the understanding of the molecular mechanism of CO2RR and opens up possibilities for designing more efficient electrocatalysts.

2.
Org Lett ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38934776

RESUMEN

Selenosulfones, as pivotal pharmaceutical molecule frameworks, have become a research hotspot in modern organic synthesis due to their vital need for efficient preparation. Herein, we have developed an iron-catalyzed four-component controllable radical tandem reaction of allenes involving cycloketone oxime esters, 1,4-diazabicyclo[2.2.2]octane bis(sulfur dioxide) adduct (DABSO), and diphenyl diselenides for the synthesis of complex selenosulfones. This is the first case of achieving the 1,2-selenosulfonylation of allenes via a radical process, wherein precise control of radical rates and polarity matching enhance high regioselective conversion. The reaction conditions are ecofriendly and mild with step-efficiency by forming two new C-S bonds and one C-Se bond in one pot. Moreover, the 1,2-selenosulfonylation of allenes can be achieved by replacing cycloketone oxime esters with aryldiazonium tetrafluoroborates in this system.

3.
Bioprocess Biosyst Eng ; 47(7): 1027-1037, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38777954

RESUMEN

With the anoxic-aerobic membrane bioreactor (AO-MBR, CP) as a reference, high-throughput sequencing technology was used to reveal the characteristics of the microbial community structure in the anaerobic side-stream anoxic-aerobic membrane bioreactor sludge reduction process (AOMBR-ASSR, SRP). After the stable operation of two processes for 120 days, the average removal efficiencies of TN and TP in the effluent of SRP were increased by 5.6% and 29.8%, respectively. The observed sludge yields (Yobs) of the two processes were 0.14 and 0.17 gMLSS/(gCOD), respectively, and the sludge reduction rate of the SRP was 19.5%. Compared to the CP, the microbial richness and diversity index of SRP increased significantly. Chloroflexi, which is responsible for the degradation of organic substances under an anaerobic condition, seemed to be reduced in the SRP. Meanwhile, other phyla that involved in the nitrogen cycle, such as Nitrospirae and Planctomycetes, were found to be more abundant in the SRP than in the CP. A total of 21 identified classes were observed, and primarily hydrolyzed fermented bacteria (Sphingobacteriia, Betaproteobacteria, Actinobacteria and Deltaproteobacteria) and slow-growing microorganisms (Bacilli) were accumulated in the SRP. At the genus level, the inserted anaerobic side-stream reactor favored the hydrolyzed bacteria (Saprospiraceae, Rhodobacter and Candidatus_Competibacter), fermented bacteria (Lactococcus and Trichococcus), and slow-growing microorganisms (Dechloromonas and Haliangium), which play a crucial role in the sludge reduction. Furthermore, the enrichment of bacterial species related to nitrogen (Nitrospir and Azospira) provided the potential for nitrogen removal, while the anaerobic environment of the side-stream reactor promoted the enrichment of phosphorus-accumulating organisms.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Reactores Biológicos/microbiología , Aguas del Alcantarillado/microbiología , Anaerobiosis , Membranas Artificiales , Microbiota , Bacterias/metabolismo , Bacterias/genética , Bacterias/crecimiento & desarrollo , Bacterias/clasificación , Aerobiosis
4.
Plant Sci ; 345: 112111, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38734143

RESUMEN

Cyclic Nucleotide-Gated Channels (CNGCs) serve as Ca2+ permeable cation transport pathways, which are involved in the regulation of various biological functions such as plant cell ion selective permeability, growth and development, responses to biotic and abiotic stresses. At the present study, a total of 31 CNGC genes were identified and bioinformatically analyzed in kenaf. Among these genes, HcCNGC21 characterized to localize at the plasma membrane, with the highest expression levels in leaves, followed by roots. In addition, HcCNGC21 could be significantly induced under salt or drought stress. Virus-induced gene silencing (VIGS) of HcCNGC21 in kenaf caused notable growth inhibition under salt or drought stress, characterized by reductions in plant height, stem diameter, leaf area, root length, root surface area, and root tip number. Meanwhile, the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were significantly decreased, accompanied by reduced levels of osmoregulatory substances and total chlorophyll content. However, ROS accumulation and Na+ content increased. The expression of stress-responsive genes, such as HcSOD, HcPOD, HcCAT, HcERF3, HcNAC29, HcP5CS, HcLTP, and HcNCED, was significantly downregulated in these silenced lines. However, under salt or drought stress, the physiological performance and expression of stress-related genes in transgenic Arabidopsis thaliana plants overexpressing HcCNGC21 were diametrically opposite to those of TRV2-HcCNGC21 kenaf line. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays revealed that HcCNGC21 interacts with HcAnnexin D1. These findings collectively underscore the positive role of HcCNGC21 in plant resistance to salt and drought stress.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Hibiscus , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hibiscus/genética , Hibiscus/fisiología , Hibiscus/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Estrés Salino/genética , Estrés Fisiológico/genética
5.
PLoS One ; 19(5): e0299550, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38743658

RESUMEN

Nine land types in the northern mining area (BKQ) (mining land, smelting land, living area), the old mining area (LKQ) (whole-ore heap, wasteland, grassland), and southern mining area (NKQ) (grassland, shrubs, farmland) of Xikuang Mountain were chosen to explore the composition and functions of soil bacterial communities under different habitats around mining areas. The composition and functions of soil bacterial communities were compared among the sampling sites using 16S rRNA high-throughput sequencing and metagenomic sequencing. α diversity analysis showed the soil bacterial diversity and abundance in the old mining area were significantly higher than those in the northern mining area. ß diversity analysis demonstrated that the soil bacterial community composition was highly similar among different vegetation coverages in the southern mining area. Microbial community function analysis showed the annotated KEGG function pathways and eggNOG function composition were consistent between the grassland of the old mining area and the grassland of the southern mining area. This study uncovers the soil bacterial community composition and functions among different habitats in the mining areas of Xikuang Mountain and will underlie soil ecosystem restoration in different habitats under heavy metal pollution around the mining areas there.


Asunto(s)
Bacterias , Microbiota , Minería , ARN Ribosómico 16S , Microbiología del Suelo , Suelo , China , Bacterias/genética , Bacterias/clasificación , ARN Ribosómico 16S/genética , Suelo/química , Ecosistema , Biodiversidad , Secuenciación de Nucleótidos de Alto Rendimiento
6.
J Am Heart Assoc ; 13(9): e032872, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38639351

RESUMEN

BACKGROUND: Peripheral pulmonary stenosis (PPS) is a condition characterized by the narrowing of the pulmonary arteries, which impairs blood flow to the lung. The mechanisms underlying PPS pathogenesis remain unclear. Thus, the aim of this study was to investigate the genetic background of patients with severe PPS to elucidate the pathogenesis of this condition. METHODS AND RESULTS: We performed genetic testing and functional analyses on a pediatric patient with PPS and Williams syndrome (WS), followed by genetic testing on 12 patients with WS and mild-to-severe PPS, 50 patients with WS but not PPS, and 21 patients with severe PPS but not WS. Whole-exome sequencing identified a rare PTGIS nonsense variant (p.E314X) in a patient with WS and severe PPS. Prostaglandin I2 synthase (PTGIS) expression was significantly downregulated and cell proliferation and migration rates were significantly increased in cells transfected with the PTGIS p.E314X variant-encoding construct when compared with that in cells transfected with the wild-type PTGIS-encoding construct. p.E314X reduced the tube formation ability in human pulmonary artery endothelial cells and caspase 3/7 activity in both human pulmonary artery endothelial cells and human pulmonary artery smooth muscle cells. Compared with healthy controls, patients with PPS exhibited downregulated pulmonary artery endothelial prostaglandin I2 synthase levels and urinary prostaglandin I metabolite levels. We identified another PTGIS rare splice-site variant (c.1358+2T>C) in another pediatric patient with WS and severe PPS. CONCLUSIONS: In total, 2 rare nonsense/splice-site PTGIS variants were identified in 2 pediatric patients with WS and severe PPS. PTGIS variants may be involved in PPS pathogenesis, and PTGIS represents an effective therapeutic target.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Oxidorreductasas Intramoleculares , Estenosis de la Válvula Pulmonar , Síndrome de Williams , Adolescente , Niño , Preescolar , Femenino , Humanos , Masculino , Movimiento Celular , Proliferación Celular , Células Cultivadas , Codón sin Sentido , Células Endoteliales/enzimología , Células Endoteliales/metabolismo , Secuenciación del Exoma , Predisposición Genética a la Enfermedad , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Fenotipo , Arteria Pulmonar/fisiopatología , Arteria Pulmonar/enzimología , Estenosis de la Válvula Pulmonar/genética , Estenosis de la Válvula Pulmonar/fisiopatología , Índice de Severidad de la Enfermedad , Síndrome de Williams/genética , Síndrome de Williams/fisiopatología , Síndrome de Williams/enzimología
7.
J Am Chem Soc ; 146(18): 12538-12546, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38656110

RESUMEN

There is growing acknowledgment that the properties of the electrochemical interfaces play an increasingly pivotal role in improving the performance of the hydrogen evolution reaction (HER). Here, we present, for the first time, direct dynamic spectral evidence illustrating the impact of the interaction between interfacial water molecules and adsorbed hydroxyl species (OHad) on the HER properties of Ni(OH)2 using Au/core-Ni(OH)2/shell nanoparticle-enhanced Raman spectroscopy. Notably, our findings highlight that the interaction between OHad and interfacial water molecules promotes the formation of weakly hydrogen-bonded water, fostering an environment conducive to improving the HER performance. Furthermore, the participation of OHad in the reaction is substantiated by the observed deprotonation step of Au@2 nm Ni(OH)2 during the HER process. This phenomenon is corroborated by the phase transition of Ni(OH)2 to NiO, as verified through Raman and X-ray photoelectron spectroscopy. The significant redshift in the OH-stretching frequency of water molecules during the phase transition confirms that surface OHad disrupts the hydrogen-bond network of interfacial water molecules. Through manipulation of the shell thickness of Au@Ni(OH)2, we additionally validate the interaction between OHad and interfacial water molecules. In summary, our insights emphasize the potential of electrochemical interfacial engineering as a potent approach to enhance electrocatalytic performance.

8.
Anal Chem ; 96(17): 6784-6793, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38632870

RESUMEN

Hepatitis B virus (HBV) is a major cause of liver cirrhosis and hepatocellular carcinoma, with HBV surface antigen (HBsAg) being a crucial marker in the clinical detection of HBV. Due to the significant harm and ease of transmission associated with HBV, HBsAg testing has become an essential part of preoperative assessments, particularly for emergency surgeries where healthcare professionals face exposure risks. Therefore, a timely and accurate detection method for HBsAg is urgently needed. In this study, a surface-enhanced Raman scattering (SERS) sensor with a sandwich structure was developed for HBsAg detection. Leveraging the ultrasensitive and rapid detection capabilities of SERS, this sensor enables quick detection results, significantly reducing waiting times. By systematically optimizing critical factors in the detection process, such as the composition and concentration of the incubation solution as well as the modification conditions and amount of probe particles, the sensitivity of the SERS immune assay system was improved. Ultimately, the sensor achieved a sensitivity of 0.00576 IU/mL within 12 min, surpassing the clinical requirement of 0.05 IU/mL by an order of magnitude. In clinical serum assay validation, the issue of false positives was effectively addressed by adding a blocker. The final sensor demonstrated 100% specificity and sensitivity at the threshold of 0.05 IU/mL. Therefore, this study not only designed an ultrasensitive SERS sensor for detecting HBsAg in actual clinical serum samples but also provided theoretical support for similar systems, filling the knowledge gap in existing literature.


Asunto(s)
Antígenos de Superficie de la Hepatitis B , Espectrometría Raman , Antígenos de Superficie de la Hepatitis B/sangre , Espectrometría Raman/métodos , Humanos , Virus de la Hepatitis B/aislamiento & purificación , Nanopartículas del Metal/química , Hepatitis B/sangre , Hepatitis B/diagnóstico , Propiedades de Superficie , Límite de Detección
9.
Org Lett ; 26(15): 3014-3019, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38547326

RESUMEN

The radical relay provides an effective paradigm for intermolecular assembly to achieve functionalization across remote chemical bonds. Herein, we report the first radical relay 1,3-carbocarbonylation of α-carbonyl alkyl bromides across two separate C═C bonds. The reaction is highly chemo- and regioselective, with two C(sp3)-C(sp3) bonds and one C═O bond formed in a single orchestrated operation. In addition, the synthesis method under mild conditions and using inexpensive copper as the catalyst allows facile access to structurally diverse 1,3-carbocarbonylation products. The plausible mechanism is investigated through a series of control experiments, including radical trapping, radical clock experiments, critical intermediate trapping, and 18O labeling experiment.

10.
Eur J Pharmacol ; 970: 176492, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38503401

RESUMEN

Pulmonary arterial hypertension (PAH) is a progressive vascular disease characterized by remodeling of the pulmonary vasculature and elevated pulmonary arterial pressure, ultimately leading to right heart failure and death. Despite its clinical significance, the precise molecular mechanisms driving PAH pathogenesis warrant confirmation. Compelling evidence indicates that during the development of PAH, pulmonary vascular cells exhibit a preference for energy generation through aerobic glycolysis, known as the "Warburg effect", even in well-oxygenated conditions. This metabolic shift results in imbalanced metabolism, increased proliferation, and severe pulmonary vascular remodeling. Exploring the Warburg effect and its interplay with glycolytic enzymes in the context of PAH has yielded current insights into emerging drug candidates targeting enzymes and intermediates involved in glucose metabolism. This sheds light on both opportunities and challenges in the realm of antiglycolytic therapy for PAH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Humanos , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Pulmonar Primaria Familiar , Glucólisis , Pulmón/metabolismo , Arteria Pulmonar/metabolismo , Remodelación Vascular
11.
Chem Sci ; 15(8): 2697-2711, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38404398

RESUMEN

Plasmonic nanocavities exhibit exceptional capabilities in visualizing the internal structure of a single molecule at sub-nanometer resolution. Among these, an easily manufacturable nanoparticle-on-mirror (NPoM) nanocavity is a successful and powerful platform for demonstrating various optical phenomena. Exciting advances in surface-enhanced spectroscopy using NPoM nanocavities have been developed and explored, including enhanced Raman, fluorescence, phosphorescence, upconversion, etc. This perspective emphasizes the construction of NPoM nanocavities and their applications in achieving higher enhancement capabilities or spatial resolution in dark-field scattering spectroscopy and plasmon-enhanced spectroscopy. We describe a systematic framework that elucidates how to meet the requirements for studying light-matter interactions through the creation of well-designed NPoM nanocavities. Additionally, it provides an outlook on the challenges, future development directions, and practical applications in the field of plasmon-enhanced spectroscopy.

12.
Biosens Bioelectron ; 251: 116101, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38324971

RESUMEN

Abnormal levels of uric acid (UA) in urine serve as warning signs for gout and metabolic cardiovascular diseases, necessitating the monitoring of UA levels for early prevention. However, the current analytical methods employed suffer from limitations in terms of inadequate suitability for home-based applications and the requirement of non-invasive procedures. In this approach, creatinine, a metabolite with a constant excretion rate, was incorporated as an endogenous internal standard (e-IS) for calibration, presenting a rapid, pretreatment-free, and accurate strategy for quantitative determination of UA concentrations. By utilizing urine creatinine as an internal reference value to calibrate the signal fluctuation of surface-enhanced Raman spectroscopy (SERS) of UA, the quantitative accuracy can be significantly improved without the need for an external internal standard. Due to the influence of the medium, UA, which carries a negative charge, is selectively adsorbed by Au@Ag nanoparticles functionalized with hexadecyltrimethylammonium chloride (CTAC) in this system. Furthermore, a highly convenient detection method was developed, which eliminates the need for pre-processing and minimizes matrix interference by simple dilution. The method was applied to the urine detection of different volunteers, and the results were highly consistent with those obtained using the UA colorimetric kit (UACK). The detection time of SERS was only 30 s, which is 50 times faster than UACK. This quantitative strategy of using urinary creatinine as an internal standard to correct the SERS intensity of uric acid is also expected to be extended to the quantitative detection needs of other biomarkers in urine.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Humanos , Ácido Úrico/orina , Creatinina/orina , Espectrometría Raman/métodos , Nanopartículas del Metal/química , Plata/química
13.
Nano Lett ; 24(9): 2681-2688, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38408023

RESUMEN

Perovskite light-emitting diodes (PeLEDs) have emerged as promising candidates for lighting and display technologies owing to their high photoluminescence quantum efficiency and high carrier mobility. However, the performance of planar PeLEDs is limited by the out-coupling efficiency, predominantly governed by photonic losses at device interfaces. Most notably, the plasmonic loss at the metal electrode interfaces can account for up to 60% of the total loss. Here, we investigate the use of plasmonic nanostructures to improve the light out-coupling in PeLEDs. By integrating these nanostructures with PeLEDs, we have demonstrated an effectively reduced plasmonic loss and enhanced light out-coupling. As a result, the nanostructured PeLEDs exhibit an average 1.5-fold increase in external quantum efficiency and an ∼20-fold improvement in device lifetime. This finding offers a generic approach for enhancing light out-coupling, promising great potential to go beyond existing performance limitations.

14.
Anal Chem ; 96(10): 4275-4281, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38409670

RESUMEN

Surface-enhanced Raman scattering (SERS) can overcome the existing technological limitations, such as complex processes and harsh conditions in gaseous small-molecule detection, and advance the development of real-time gas sensing at room temperature. In this study, a SERS-based hydrogen bonding induction strategy for capturing and sensing gaseous acetic acid is proposed for the detection demands of gaseous acetic acid. This addresses the challenges of low adsorption of gaseous small molecules on SERS substrates and small Raman scattering cross sections and enables the first SERS-based detection of gaseous acetic acid by a portable Raman spectrometer. To provide abundant hydrogen bond donors and acceptors, 4-mercaptobenzoic acid (4-MBA) was used as a ligand molecule modified on the SERS substrate. Furthermore, a sensing chip with a low relative standard deviation (RSD) of 4.15% was constructed, ensuring highly sensitive and reliable detection. The hydrogen bond-induced acetic acid trapping was confirmed by experimental spectroscopy and density functional theory (DFT). In addition, to achieve superior accuracy compared to conventional methods, an innovative analytical method based on direct response hydrogen bond formation (IO-H/Iref) was proposed, enabling the detection of gaseous acetic acid at concentrations as low as 60 ppb. The strategy demonstrated a superior anti-interference capability in simulated breath and wine detection systems. Moreover, the high reusability of the chip highlights the significant potential for real-time sensing of gaseous acetic acid.

15.
J Am Chem Soc ; 145(37): 20381-20388, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37668654

RESUMEN

Realizing the dual emission of fluorescence-phosphorescence in a single system is an extremely important topic in the fields of biological imaging, sensing, and information encryption. However, the phosphorescence process is usually in an inherently "dark state" at room temperature due to the involvement of spin-forbidden transition and the rapid non-radiative decay rate of the triplet state. In this work, we achieved luminescent harvesting of the dark phosphorescence processes by coupling singlet-triplet molecular emitters with a rationally designed plasmonic cavity. The achieved Purcell enhancement effect of over 1000-fold allows for overcoming the triplet forbidden transitions, enabling radiation enhancement with selectable emission wavelengths. Spectral results and theoretical simulations indicate that the fluorescence-phosphorescence peak position can be intelligently tailored in a broad range of wavelengths, from visible to near-infrared. Our study sheds new light on plasmonic tailoring of molecular emission behavior, which is crucial for advancing research on plasmon-tailored fluorescence-phosphorescence spectroscopy in optoelectronics and biomedicine.

16.
J Clin Invest ; 133(18)2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37712419

RESUMEN

Hormone replacement therapy (HRT) is not recommended for treating learning and memory decline in menopausal women because it exerts adverse effects by activating classic estrogen receptors ERα and ERß. The membrane estrogen receptor G protein-coupled receptor 30 (GPR30) has been reported to be involved in memory modulation; however, the underlying mechanisms are poorly understood. Here, we found that GPR30 deletion in astrocytes, but not in neurons, impaired learning and memory in female mice. Astrocytic GPR30 depletion induced A1 phenotype transition, impairing neuronal function. Further exploration revealed that Praja1 (PJA1), a RING ubiquitin ligase, mediated the effects of astrocytic GPR30 on learning and memory by binding to Serpina3n, which is a molecular marker of neuroinflammation in astrocytes. GPR30 positively modulated PJA1 expression through the CREB signaling pathway in cultured murine and human astrocytes. Additionally, the mRNA levels of GPR30 and PJA1 were reduced in exosomes isolated from postmenopausal women while Serpina3n levels were increased in the plasma. Together, our findings suggest a key role for astrocytic GPR30 in the learning and memory abilities of female mice and identify GPR30/PJA1/Serpina3n as potential therapeutic targets for learning and memory loss in peri- and postmenopausal women.


Asunto(s)
Astrocitos , Receptores de Estrógenos , Animales , Femenino , Humanos , Ratones , Aprendizaje , Receptores Acoplados a Proteínas G/genética , Transducción de Señal , Ubiquitina-Proteína Ligasas
17.
Artículo en Inglés | MEDLINE | ID: mdl-37440375

RESUMEN

In real scenarios, graph-based multiview clustering has clearly shown popularity owing to the high efficiency in fusing the information from multiple views. Practically, the multiview graphs offer both consistent and inconsistent cues as they usually come from heterogeneous sources. Previous methods illustrated the importance of leveraging the multiview consistency and inconsistency for accurate modeling. However, when fusing the graphs, the inconsistent parts are generally ignored and hence the valued view-specific attributes are lost. To solve this problem, we propose an accurate complementarity learning (ACL) model for graph-based multiview clustering. ACL clearly distinguishes the consistent, complementary, and noise and corruption terms from the initial multiview graphs. In contrast to existing models that overlooked the complementary information, we argue that the view-specific characteristics extracted from the complementary terms are beneficial for affinity learning. In addition, ACL exploits only the positive parts of the complementary information for preserving the evidence on the positive sample relationship, and ignores the negative cues to avoid the vanishing of effective affinity strengths. This way, the learned affinity matrix is able to properly balance the consistent and complementary information. To solve the ACL model, we introduce an efficient alternating optimization algorithm with a varying penalty parameter. Experiments on synthetic and real-world databases clearly demonstrated the superiority of ACL.

18.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-37259293

RESUMEN

Cardiovascular diseases (CVDs) are the leading cause of hospitalization and death worldwide, especially in developing countries. The increased prevalence rate and mortality due to CVDs, despite the development of several approaches for prevention and treatment, are alarming trends in global health. Chronic inflammation and macrophage infiltration are key regulators of the initiation and progression of CVDs. Recent data suggest that epigenetic modifications, such as DNA methylation, posttranslational histone modifications, and RNA modifications, regulate cell development, DNA damage repair, apoptosis, immunity, calcium signaling, and aging in cardiomyocytes; and are involved in macrophage polarization and contribute significantly to cardiac disease development. Cardiac macrophages not only trigger damaging inflammatory responses during atherosclerotic plaque formation, myocardial injury, and heart failure but are also involved in tissue repair, remodeling, and regeneration. In this review, we summarize the key epigenetic modifications that influence macrophage polarization and contribute to the pathophysiology of CVDs, and highlight their potential for the development of advanced epigenetic therapies.

19.
JACS Au ; 3(3): 860-867, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37006769

RESUMEN

Phase transition of the polymorphs is critical for controlled synthesis and property modulation of functional materials. Upconversion emissions from an efficient hexagonal sodium rare-earth (RE) fluoride compound, ß-NaREF4, which is generally obtained from the phase transition of the cubic (α-) phase counterpart, are attractive for photonic applications. However, the investigation of the α → ß phase transition of NaREF4 and its effect on the composition and architecture is still preliminary. Herein, we investigated the phase transition with two kinds of α-NaREF4 particles. Instead of a uniform composition, the ß-NaREF4 microcrystals exhibited regionally distributed RE3+ ions, in which the RE3+ with a smaller ionic radius (smaller RE3+) sandwiched the RE3+ with a larger ionic radius (larger RE3+). We unravel that the α-NaREF4 particles transformed to ß-NaREF4 nuclei with no controversial dissolution, and the α → ß phase transition toward NaREF4 microcrystals included nucleation and growth steps. The component-dependent phase transition is corroborated with RE3+ ions from Ho3+ to Lu3+ and multiple sandwiched microcrystals were obtained, in which up to five kinds of RE components were distributed regionally. Moreover, with rational integration of luminescent RE3+ ions, a single particle with multiplexed upconversion emissions in wavelength and lifetime domains is demonstrated, which provides a unique platform for optical multiplexing applications.

20.
Front Cell Infect Microbiol ; 13: 1103919, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36909722

RESUMEN

Background: The transition from methamphetamine (MA) casual use (MCU) to compulsive use is enigmatic as some MA users can remain in casual use, but some cannot. There is a knowledge gap if gut microbiota (GM) play a role in differing MCU from MA use disorder (MUD). We aimed to investigate the clinical features and GM differences between individuals with MCU and MUD. Method: We recruited two groups of MA users -MCU and MUD - and matched them according to age and body mass index (n=21 in each group). Participants were accessed using the Semi-Structured Assessment for Drug Dependence and Alcoholism, and their fecal samples were undergone 16S ribosomal DNA sequencing. We compared the hosts' clinical features and GM diversity, composition, and structure (represented by enterotypes) between the two groups. We have identified differential microbes between the two groups and performed network analyses connecting GM and the clinical traits. Result: Compared with the casual users, individuals with MUD had higher incidences of MA-induced neuropsychiatric symptoms (e.g., paranoia, depression) and withdrawal symptoms (e.g., fatigue, drowsiness, and increased appetite), as well as stronger cravings for and intentions to use MA, and increased MA tolerance. The GM diversity showed no significant differences between the two groups, but four genera (Halomonas, Clostridium, Devosia, and Dorea) were enriched in the individuals with MUD (p<0.05). Three distinct enterotypes were identified in all MA users, and Ruminococcus-driven enterotype 2 was dominant in individuals with MUD compared to the MCU (61.90% vs. 28.60%, p=0.03). Network analysis shows that Devosia is the hub genus (hub index = 0.75), which is not only related to the counts of the MUD diagnostic criteria (ρ=0.40; p=0.01) but also to the clinical features of MA users such as reduced social activities (ρ=0.54; p<0.01). Devosia is also associated with the increased intention to use MA (ρ=0.48; p<0.01), increased MA tolerance (ρ=0.38; p=0.01), craving for MA (ρ=0.37; p=0.01), and MA-induced withdrawal symptoms (p<0.05). Conclusion: Our findings suggest that Ruminococcus-driven enterotype 2 and the genera Devosia might be two influential factors that differentiate MA casual use from MUD, but further studies are warranted.


Asunto(s)
Trastornos Relacionados con Anfetaminas , Microbioma Gastrointestinal , Metanfetamina , Síndrome de Abstinencia a Sustancias , Humanos , Síndrome de Abstinencia a Sustancias/complicaciones , Trastornos Relacionados con Anfetaminas/complicaciones , Trastornos Relacionados con Anfetaminas/epidemiología , Trastornos Relacionados con Anfetaminas/psicología , Apetito
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...