Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pest Manag Sci ; 80(3): 1412-1422, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37939120

RESUMEN

BACKGROUND: The biocontrol potential of soil microbes can reduce the extensive use of hazardous synthetic fungicides. This study was designed to find a strain of rhizobacteria indigenous to Pakistan with potential biocontrol against early blight of tomato caused by Alternaria solani and to characterize its biocontrol mechanisms. RESULTS: Among 88 strains tested for antagonism against A. solani on agar media, S27, Dt10 and 423, identified by 16S rRNA sequencing as strains of Bacillus amyloliquefaciens, B. cereus and Stenotrophomonas rhizophila, respectively, were the most inhibitory. When applied to detached tomato leaflets in Petri dish assays, the strains reduced lesion development by over 30% compared to the control. In greenhouse pot trials, the bacterial strains reduced early blight severity by over 50%. In three field trials, all three strains applied to tomato foliage slowed early blight disease progress and reduced disease severity, with B. amyloliquefaciens S27 reducing the area under the disease progress curve by up to 70%. All three strains showed protease, catalase and oxidase activities in vitro, but none produced ß-1,3-glucanase and only B. cereus Dt10 showed slight chitinase activity. In a greenhouse experiment in which the bacteria were applied to tomato foliage prior to pathogen inoculation, bacteria-treated leaves had higher ß-1,3-glucanase and chitinase levels than leaves inoculated only with the pathogen, indicating priming induction of response. CONCLUSION: Three rhizobacteria strains have the potential to control early blight of tomato under Pakistan's growing conditions, with B. amyloliquefaciens S27 being the most promising candidate for commercial development. Antagonism and induction of the priming response may be mechanisms of biocontrol by the bacterial strains. © 2023 Society of Chemical Industry.


Asunto(s)
Quitinasas , Solanum lycopersicum , Pakistán , ARN Ribosómico 16S/genética , Enfermedades de las Plantas/microbiología
2.
PLoS One ; 16(4): e0249335, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33905422

RESUMEN

The Sandhills of Nebraska is a complex ecosystem, covering 50,000 km2 in central and western Nebraska and predominantly of virgin grassland. Grasslands are the most widespread vegetation in the U.S. and once dominated regions are currently cultivated croplands, so it stands to reason that some of the current plant pathogens of cultivated crops originated from grasslands, particularly soilborne plant pathogens. The anamorphic genus Rhizoctonia includes genetically diverse organisms that are known to be necrotrophic fungal pathogens, saprophytes, mycorrhiza of orchids, and biocontrol agents. This study aimed to evaluate the diversity of Rhizoctonia spp. on four native grasses in the Sandhills of Nebraska and determine pathogenicity to native grasses and soybean. In 2016 and 2017, a total of 84 samples were collected from 11 sites in the Sandhills, located in eight counties of Nebraska. The samples included soil and symptomatic roots from the four dominant native grasses: sand bluestem, little bluestem, prairie sandreed, and needle-and-thread. Obtained were 17 Rhizoctonia-like isolates identified, including five isolates of binucleate Rhizoctonia AG-F; two isolates each from binucleate Rhizoctonia AG-B, AG-C, and AG-K, Rhizoctonia solani AGs: AG-3, and AG-4; one isolate of binucleate Rhizoctonia AG-L, and one isolate of R. zeae. Disease severity was assessed for representative isolates of each AG in a greenhouse assay using sand bluestem, needle-and-thread, and soybean; prairie sandreed and little bluestem were unable to germinate under artificial conditions. On native grasses, all but two isolates were either mildly aggressive (causing 5-21% disease severity) or aggressive (21-35% disease severity). Among those, three isolates were cross-pathogenic on soybean, with R. solani AG-4 shown to be highly aggressive (86% disease severity). Thus, it is presumed that Rhizoctonia spp. are native to the sandhills grasslands and an emerging pathogen of crops cultivated may have survived in the soil and originate from grasslands.


Asunto(s)
Agricultura , Ecosistema , Variación Genética , Poaceae/microbiología , Rhizoctonia/genética , Rhizoctonia/patogenicidad , ADN de Hongos/genética , Nebraska , Raíces de Plantas/microbiología , Virulencia
3.
Int J Microbiol ; 2018: 5686874, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30402105

RESUMEN

Bacilli are commonly used as plant growth-promoting agents but can be limited in effectiveness to certain crop and soil environments. The objectives of this study were to (1) identify Bacillus strains that can be consistent in promoting the growth of corn, wheat, and soybean and (2) determine whether physiological traits expressed in vitro can be predictive of growth promotion efficacy/consistency and be used for selecting effective strains. Twelve Bacillus strains isolated from wheat rhizospheres were evaluated in greenhouse pot tests with nonsterile soil for their effects on the growth of corn, soybean, and wheat. The strains also were assessed in vitro for multiple physiological traits. All 12 strains increased corn growth significantly compared to the controls. The four most efficacious strains on corn-Bacillus megaterium R181, B. safensis R173, B. simplex R180, and Paenibacillus graminis R200-also increased the growth of soybean and wheat. No set of traits was a predictor of growth promotion efficacy. The number of traits expressed by a strain also was not an indicator of efficacy as strain R200 that was positive for only one trait showed high growth promotion efficacy. Effective strains can be identified through pot tests on multiple crop plants, but in vitro physiological assays are unreliable for strain selection.

4.
Fungal Biol ; 122(6): 465-470, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29801790

RESUMEN

K20 is a novel amphiphilic aminoglycoside capable of inhibiting many fungal species. K20's capabilities to inhibit Fusarium graminearum the causal agent wheat Fusarium head blight (FHB) and to this disease were examined. K20 inhibited the growth of F. graminearum (minimum inhibitory concentrations, 7.8-15.6 mg L-1) and exhibited synergistic activity when combined with triazole and strobilurin fungicides. Application of K20 up to 720 mg L-1 to wheat heads in the greenhouse showed no phytotoxic effects. Spraying wheat heads in the greenhouse with K20 alone at 360 mg L-1 lowered FHB severity below controls while combining K20 with half-label rates of Headline (pyraclostrobin) improved its disease control efficacy. In field trials, spraying K20 at 180 mg L-1 and 360 mg L-1 combined with half-label rates of Headline, Proline 480 SC (prothioconazole), Prosaro 421 SC (prothioconazole + tebuconazole), and Caramba (metconazole) reduced FHB indices synergistically. In addition, the K20 plus Proline 480 SC combination reduced levels of the mycotoxin deoxinivalenol by 75 % compared to the control. These data suggest that K20 may be useful as a fungicide against plant diseases such as FHB particularly when combined with commercial fungicides applied at below recommended rates.


Asunto(s)
Aminoglicósidos/farmacología , Fungicidas Industriales/farmacología , Fusarium/efectos de los fármacos , Enfermedades de las Plantas/microbiología , Estrobilurinas/efectos adversos , Triticum/microbiología , Pruebas de Sensibilidad Microbiana
5.
AMB Express ; 7(1): 123, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28618714

RESUMEN

Ax21 family proteins have been shown to play regulatory roles in plant- and animal-pathogenic species in the bacterial family Xanthomonadaceae, but the protein have not been investigated previously in the non-pathogenic members of this bacterial family. Lysobacter enzymogenes, is a non-pathogenic species known for its capacity as a biocontrol agent of plant pathogens. It is also noted for the production of antimicrobial secondary metabolites, heat stable antifungal factor (HSAF) and WAP-8294A2, that have potential for agricultural and pharmaceutical applications. The species also displays type IV pili-dependent twitching motility and the production of multiple extracellular lytic enzymes as additional biocontrol-related traits. Here, we show that L. enzymogenes strain OH11 possesses three genes widely separated in the OH11 genome that code for unique Ax21-like proteins (Lsp). By comparing the wildtype OH11 with mutant strains having a single lsp gene or a combination of lsp genes deleted, we found that each Lsp protein individually is involved in positive regulation of HSAF and WAP-8294A2 biosynthesis, but the proteins collectively do not exert additive effects in this regulation. None of the Lsp proteins were found to influence twitching motility or the production of three extracellular lytic enzymes. This study is the first to provide evidence linking Ax21-family proteins to antibiotic biosynthesis and, hence, adds new insights into the diversity of regulatory functions of Ax21 family proteins in bacteria.

6.
Phytopathology ; 105(10): 1318-24, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26360465

RESUMEN

Lysobacter enzymogenes strain C3 is a gliding bacterium which produces the antifungal secondary metabolite heat-stable antifungal factor (HSAF) and type IV pilus (T4P) as important mechanisms in biological control activity against fungal pathogens. To date, the regulators that control HSAF biosynthesis and T4P-dependent twitching motility in L. enzymogenes are poorly explored. In the present study, we addressed the role of pilG in the regulation of these two traits in L. enzymogenes. PilG of L. enzymogenes was found to be a response regulator, commonly known as a component of a two-component transduction system. Mutation of pilG in strain C3 abolished its ability to display spreading colony phenotype and cell movement at the colony margin, which is indicative of twitching motility; hence, PilG positively regulates twitching motility in L. enzymogenes. Mutation of pilG also enhanced HSAF production and the transcription of its key biosynthetic gene hsaf pks/nrps, suggesting that PilG plays a negative regulatory role in HSAF biosynthesis. This finding represents the first demonstration of the regulator PilG having a role in secondary metabolite biosynthesis in bacteria. Collectively, our results suggest that key ecological functions (HSAF production and twitching motility) in L. enzymogenes strain C3 are regulated in opposite directions by the same regulatory protein, PilG.


Asunto(s)
Antifúngicos/metabolismo , Proteínas Bacterianas/genética , Lysobacter/genética , Enfermedades de las Plantas/microbiología , Secuencia de Aminoácidos , Proteínas Bacterianas/metabolismo , Agentes de Control Biológico , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Lysobacter/fisiología , Fenómenos Microbiológicos , Datos de Secuencia Molecular , Familia de Multigenes , Mutación , Alineación de Secuencia , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Phytopathology ; 105(8): 1146-54, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25894317

RESUMEN

Switchgrass (Panicum virgatum) cultivars are currently under development as lignocellulosic feedstock. Here we present a survey of three established switchgrass experimental nurseries in Nebraska in which we identified Panicum mosaic virus (PMV) as the most prevalent virus. In 2012, 72% of 139 symptomatic plants tested positive for PMV. Of the PMV-positive samples, 19% were coinfected with its satellite virus (SPMV). Less than 14% of all sampled plants in 2012 were positive for four additional viruses known to infect switchgrass. In 2013, randomized sampling of switchgrass individuals from the same 2012 breeding plots revealed that infection by PMV or PMV+SPMV was both more prevalent and associated with more severe symptoms in the cultivar Summer, and experimental lines with Summer parentage, than populations derived from the cultivar Kanlow. A 3-year analysis, from 2012 to 2014, showed that previously uninfected switchgrass plants acquire PMV or PMV+SPMV between harvest cycles. In contrast, some plants apparently did not maintain PMV infections at detectable levels from year-to-year. These findings suggest that PMV and SPMV should be considered important pathogens of switchgrass and serious potential threats to biofuel crop production efficiency.


Asunto(s)
Panicum/virología , Enfermedades de las Plantas/virología , Virus Satélites/aislamiento & purificación , Tombusviridae/aislamiento & purificación , Biocombustibles , Cruzamiento , Enfermedades de las Plantas/estadística & datos numéricos , ARN Viral/genética , Virus Satélites/genética , Tombusviridae/genética
8.
J Eukaryot Microbiol ; 56(2): 182-7, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-21462551

RESUMEN

Dihydromaltophilin (heat-stable antifungal factor [HSAF]) is an antifungal metabolite produced in Lysobacter enzymogenes biocontrol strain C3. This compound induces cell wall thickening in Aspergillus nidulans. Here we show that the cell wall thickening is a general response to HSAF in diverse fungal species. In the A. nidulans model, the thickened cell wall negatively affects hyphal growth. Growth of HSAF-pre-treated hyphae failed to resume at hyphal tips with thick cell wall and the actin cable could not re-polarize at the thickened region of the cell wall, even after the treated hyphae were transferred to drug-free medium. Moreover, HSAF-induced cell wall thickening is mediated by sphingolipid synthesis: HSAF failed to induce cell wall thickening in the absence of ceramide synthase BarA and the sphingolipid synthesis inhibitor myriocin was able to suppress HSAF-induced cell wall thickening. The thickened cell wall could be digested by chitinase suggesting that chitin contributes to the HSAF-induced thickening. Furthermore, HSAF treatment activated the transcription of two chitin synthase encoding genes chsB and chsC.


Asunto(s)
Aspergillus nidulans/citología , Aspergillus nidulans/metabolismo , Pared Celular/metabolismo , Lactamas/farmacología , Lysobacter/metabolismo , Esfingolípidos/biosíntesis , Antifúngicos/farmacología , Aspergillus nidulans/efectos de los fármacos , Pared Celular/efectos de los fármacos , Quitina Sintasa/genética , Quitina Sintasa/metabolismo , Quitinasas/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Proteínas Fúngicas/metabolismo , Hifa/citología , Hifa/efectos de los fármacos , Hifa/metabolismo , Oxidorreductasas/metabolismo
9.
Int J Food Microbiol ; 119(1-2): 126-30, 2007 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-17716767

RESUMEN

Many mycotoxigenic fungi infect plant hosts and cause disease in the field. Therefore, control of field infection by these fungi is a critical step in managing mycotoxin accumulation in the harvested product. Fusarium graminearum, also known as Gibberella zeae, is the causal agent of Fusarium head blight (FHB), or scab, in cereals and is also the primary agent responsible for contamination of grain with deoxynivalenol (DON). Research efforts worldwide are devoted to the development of strategies to control field infection of wheat and barley by this pathogen. Strategies include the use of fungicides and biological control agents to protect flowering heads from infection. There is extensive effort in breeding for host resistance to infection and spread of the pathogen within the heads. Scientists are also seeking exogenous traits to introduce into cereals to enhance resistance. Cultural practices are also being examined, primarily as measures to reduce pathogen survival and inoculum production in crop residues. The successes and limitations of these strategies in the management of Fusarium head blight and deoxynivalenol are discussed.


Asunto(s)
Contaminación de Alimentos/prevención & control , Gibberella/crecimiento & desarrollo , Tricotecenos/análisis , Triticum/química , Triticum/microbiología , Contaminación de Alimentos/análisis , Fungicidas Industriales/farmacología , Gibberella/metabolismo , Control Biológico de Vectores , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente/química , Plantas Modificadas Genéticamente/microbiología , Gestión de Riesgos
10.
Can J Microbiol ; 51(8): 719-23, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16234871

RESUMEN

A global regulator was previously identified in Lysobacter enzymogenes C3, which when mutated, resulted in strains that were greatly reduced in the expression of traits associated with fungal antagonism and devoid of biocontrol activity towards bipolaris leaf-spot of tall fescue and pythium damping-off of sugarbeet. A clp gene homologue belonging to the crp gene family was found to globally regulate enzyme production, antimicrobial activity, and biological control activity expressed by Lysobacter enzymogenes C3 (Kobayashi et al. 2005). Here, we report on the expansion of the biocontrol range of L. enzymogenes C3 to summer patch disease caused by Magnaporthe poae. The clp- mutant strain 5E4 was reduced in its ability to suppress summer patch disease compared with the wild-type strain C3 and was completely devoid of antifungal activity towards M. poae. Furthermore, cell suspensions of 5E4 were incapable of colonizing M. poae mycelium in a manner that was distinct for C3. Strain C3 demonstrated biosurfactant activity in cell suspensions and culture filtrates that was associated with absorption into the mycelium during the colonization process, whereas 5E4 did not. These results describe a novel interaction between bacteria and fungi that intimates a pathogenic relationship.


Asunto(s)
Antibiosis , Endopeptidasa Clp/metabolismo , Regulación Bacteriana de la Expresión Génica , Magnaporthe/crecimiento & desarrollo , Control Biológico de Vectores , Enfermedades de las Plantas/microbiología , Poa/microbiología , Xanthomonadaceae/crecimiento & desarrollo , Magnaporthe/patogenicidad , Pruebas de Sensibilidad Microbiana/métodos , Poaceae/microbiología , Xanthomonadaceae/enzimología , Xanthomonadaceae/genética
11.
Appl Environ Microbiol ; 71(1): 261-9, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15640196

RESUMEN

Lysobacter enzymogenes strain C3, a biological control agent for plant diseases, produces multiple extracellular hydrolytic enzymes and displays antimicrobial activity against various fungal and oomycetous species. However, little is known about the regulation of these enzymes or their roles in antimicrobial activity and biocontrol. A study was undertaken to identify mutants of strain C3 affected in extracellular enzyme production and to evaluate their biocontrol efficacy. A single mini-Tn5-lacZ(1)-cat transposon mutant of L. enzymogenes strain C3 that was globally affected in a variety of phenotypes was isolated. In this mutant, 5E4, the activities of several extracellular lytic enzymes, gliding motility, and in vitro antimicrobial activity were reduced. Characterization of 5E4 indicated that the transposon inserted in a clp gene homologue belonging to the Crp gene family of regulators. Immediately downstream was a second open reading frame similar to that encoding acetyltransferases belonging to the Gcn5-related N-acetyltransferase superfamily, which reverse transcription-PCR confirmed was cotranscribed with clp. Chromosomal deletion mutants with mutations in clp and between clp and the acetyltransferase gene verified the 5E4 mutant phenotype. The clp gene was chromosomally inserted in mutant 5E4, resulting in complemented strain P1. All mutant phenotypes were restored in P1, although the gliding motility was observed to be excessive compared with that of the wild-type strain. clp mutant strains were significantly affected in biological control of pythium damping-off of sugar beet and bipolaris leaf spot of tall fescue, which was partially or fully restored in the complemented strain P1. These results indicate that clp is a global regulatory gene that controls biocontrol traits expressed by L. enzymogenes C3.


Asunto(s)
Endopeptidasa Clp/genética , Hongos/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Control Biológico de Vectores , Pythium/crecimiento & desarrollo , Xanthomonadaceae/enzimología , Acetiltransferasas/química , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Beta vulgaris/microbiología , Elementos Transponibles de ADN , Hongos/patogenicidad , Datos de Secuencia Molecular , Mutación , Enfermedades de las Plantas/microbiología , Poaceae/microbiología , Pythium/patogenicidad , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Xanthomonadaceae/genética , Xanthomonadaceae/fisiología
12.
Phytopathology ; 95(6): 701-7, 2005 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18943787

RESUMEN

ABSTRACT Lysobacter enzymogenes produces extracellular lytic enzymes capable of degrading the cell walls of fungi and oomycetes. Many of these enzymes, including beta-1,3-glucanases, are thought to contribute to the biological control activity expressed by several strains of the species. L. enzymogenes strain C3 produces multiple extracellular beta-1,3-glucanases encoded by the gluA, gluB, and gluC genes. Analysis of the genes indicates they are homologous to previously characterized genes in the related strain N4-7, each sharing >95% amino acid sequence identity to their respective counterparts. The gluA and gluC gene products encode enzymes belonging to family 16 glycosyl hydrolases, whereas gluB encodes an enzyme belonging to family 64. Mutational analysis indicated that the three genes accounted for the total beta-1,3-glucanase activity detected in culture. Strain G123, mutated in all three glucanase genes, was reduced in its ability to grow in a minimal medium containing laminarin as a sole carbon source. Although strain G123 was not affected in antimicrobial activity toward Bipolaris sorokiniana or Pythium ultimum var. ultimum using in vitro assays, it was significantly reduced in biological control activity against Bipolaris leaf spot of tall fescue and Pythium damping-off of sugar beet. These results provide direct supportive evidence for the role of beta-1,3-glucanases in biocontrol activity of L. enzymogenes strain C3.

13.
Phytopathology ; 93(9): 1103-10, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18944093

RESUMEN

ABSTRACT Induced resistance was found to be a mechanism for biological control of leaf spot, caused by Bipolaris sorokiniana, in tall fescue (Festuca arundinacea) using the bacterium Lysobacter enzymogenes strain C3. Resistance elicited by C3 suppressed germination of B. sorokiniana conidia on the phylloplane in addition to reducing the severity of leaf spot. The pathogen-inhibitory effect could be separated from antibiosis by using heat-inactivated cells of C3 that retained no antifungal activity. Application of live or heat-killed cells to tall fescue leaves resulted only in localized resistance confined to the treated leaf, whereas treatment of roots resulted in systemic resistance expressed in the foliage. The effects of foliar and root applications of C3 were long lasting, as evidenced by suppression of conidial germination and leaf spot development even when pathogen inoculation was delayed 15 days after bacterial treatment. When C3 population levels and germination of pathogen conidia was examined on leaf segments, germination percentage was reduced on all segments from C3-treated leaves compared with segments from non-treated leaves, but no dose-response relationship typical of antagonism was found. Induced resistance by C3 was not host or pathogen specific; foliar application of heat-killed C3 cells controlled B. sorokiniana on wheat and also was effective in reducing the severity of brown patch, caused by Rhizoctonia solani, on tall fescue. Treatments of tall fescue foliage or roots with C3 resulted in significantly elevated peroxidase activity compared with the control.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA