Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Sci ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037215

RESUMEN

Chromosome segregation errors caused by centromere malfunction can lead to chromosome instability and aneuploidy. In Caenorhabditis elegans, the Argonaute protein CSR-1 is essential for proper chromosome segregation, though the specific mechanisms are not fully understood. Here we investigated how CSR-1 regulates centromere and kinetochore function in C. elegans embryos. We found that the depletion of CSR-1 results in defects in mitotic progression and chromosome positioning relative to the spindle pole. CSR-1 knockdown does not affect centromeric histone H3 variant CENP-A/HCP-3 mRNA and protein levels, but increases the localization of HCP-3 and some kinetochore proteins onto the mitotic chromosomes. Such elevation of chromatin HCP-3 localization depends on the CSR-1 RNAi pathway upstream factor EGO-1 and CSR-1's PIWI domain activity. Our results suggest that CSR-1 restricts HCP-3 level at the holocentromeres, prevents erroneous kinetochore assembly, and thereby promotes accurate chromosome segregation. Our work sheds light on CSR-1's role in regulating deposition of HCP-3 on chromatin and centromere function in the embryos.

2.
Chromosoma ; 132(3): 211-230, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37401943

RESUMEN

Centromeres are no longer considered to be silent. Both centromeric and pericentric transcription have been discovered, and their RNA transcripts have been characterized and probed for functions in numerous monocentric model organisms recently. Here, we will discuss the challenges in centromere transcription studies due to the repetitive nature and sequence similarity in centromeric and pericentric regions. Various technological breakthroughs have helped to tackle these challenges and reveal unique features of the centromeres and pericentromeres. We will briefly introduce these techniques, including third-generation long-read DNA and RNA sequencing, protein-DNA and RNA-DNA interaction detection methods, and epigenomic and nucleosomal mapping techniques. Interestingly, some newly analyzed repeat-based holocentromeres also resemble the architecture and the transcription behavior of monocentromeres. We will summarize evidences that support the functions of the transcription process and stalling, and those that support the functions of the centromeric and pericentric RNAs. The processing of centromeric and pericentric RNAs into multiple variants and their diverse structures may also provide clues to their functions. How future studies may address the separation of functions of specific centromeric transcription steps, processing pathways, and the transcripts themselves will also be discussed.


Asunto(s)
Centrómero , Transcripción Genética , Centrómero/genética , Nucleosomas/genética , Secuencia de Bases , ARN
3.
Toxicology ; 484: 153413, 2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36581016

RESUMEN

A great variety of endocrine-disrupting chemicals (EDCs) have been used extensively and become widespread in the environment nowadays. Limited mammalian studies have shown that certain EDCs may target chromosome and epigenome of the germline, leading to adverse effects in subsequent generations, despite these progenies having never been exposed to the EDC before. However, the underlying mechanisms of chromosomal changes induced by these pollutants remain poorly known. Using the human ovarian granulosa tumor cell line COV434 as a model, we investigated and compared the transcriptomic changes induced by nine EDCs with diverse chemical structures (i.e. BDE-47, BPA, BP-3, DEHP, DHP, EE2, TCS, TDCPP and NP), to inquire if there is any common epigenetic modification associated with reproductive functions induced by these EDCs. Our results showed that COV434 cells were more responsive to BP-3, NP, DEHP and EE2, and more importantly, these four EDCs altered the expression of gene clusters related to DNA damage response, cell cycle, proliferation, and chromatin remodeling, which can potentially lead to epigenetic modifications and transgenerational inheritance. Furthermore, dysregulation of similar gene clusters was common in DEHP and NP treatments. Bioinformatics analysis further revealed that BP-3 disturbed signaling pathways associated with reproductive functions, whereas alterations in telomere-related pathways were highlighted upon EE2 exposure. Overall, this study highlighted chromatin modifications caused by a class of chemicals which that may potentially lead to epigenetic changes and transgenerational reproductive impairments.


Asunto(s)
Dietilhexil Ftalato , Disruptores Endocrinos , Contaminantes Ambientales , Animales , Humanos , Transcriptoma , Epigénesis Genética , Disruptores Endocrinos/toxicidad , Cromatina , Mamíferos/genética
6.
Semin Cell Dev Biol ; 127: 79-89, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35042676

RESUMEN

The centromere is a unique functional region on each eukaryotic chromosome where the kinetochore assembles and orchestrates microtubule attachment and chromosome segregation. Unlike monocentromeres that occupy a specific region on the chromosome, holocentromeres are diffused along the length of the chromosome. Despite being less common, holocentromeres have been verified in almost 800 nematode, insect, and plant species. Understanding of the molecular and epigenetic regulation of holocentromeres is lagging that of monocentromeres. Here we review how permissive locations for holocentromeres are determined across the genome, potentially by chromatin organisation, transcription, and non-coding RNAs, specifically in the nematode C. elegans. In addition, we discuss how holocentric CENP-A or CENP-T-containing nucleosomes are recruited and deposited, through the help of histone chaperones, licensing factors, and condensin complexes, both during de novo holocentromere establishment, and in each mitotic cell cycle. The process of resolving sister centromeres after DNA replication in holocentric organisms is also mentioned. Conservation and diversity between holocentric and monocentric organisms are highlighted, and outstanding questions are proposed.


Asunto(s)
Caenorhabditis elegans , Nematodos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Centrómero/genética , Cromatina/genética , Cromatina/metabolismo , Epigénesis Genética , Mitosis , Nematodos/genética , Nucleosomas/metabolismo
7.
Nucleic Acids Res ; 49(16): 9174-9193, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34417622

RESUMEN

To investigate how exogenous DNA concatemerizes to form episomal artificial chromosomes (ACs), acquire equal segregation ability and maintain stable holocentromeres, we injected DNA sequences with different features, including sequences that are repetitive or complex, and sequences with different AT-contents, into the gonad of Caenorhabditis elegans to form ACs in embryos, and monitored AC mitotic segregation. We demonstrated that AT-poor sequences (26% AT-content) delayed the acquisition of segregation competency of newly formed ACs. We also co-injected fragmented Saccharomyces cerevisiae genomic DNA, differentially expressed fluorescent markers and ubiquitously expressed selectable marker to construct a less repetitive, more complex AC. We sequenced the whole genome of a strain which propagates this AC through multiple generations, and de novo assembled the AC sequences. We discovered CENP-AHCP-3 domains/peaks are distributed along the AC, as in endogenous chromosomes, suggesting a holocentric architecture. We found that CENP-AHCP-3 binds to the unexpressed marker genes and many fragmented yeast sequences, but is excluded in the yeast extremely high-AT-content centromeric and mitochondrial DNA (> 83% AT-content) on the AC. We identified A-rich motifs in CENP-AHCP-3 domains/peaks on the AC and on endogenous chromosomes, which have some similarity with each other and similarity to some non-germline transcription factor binding sites.


Asunto(s)
Segregación Cromosómica , Cromosomas Artificiales/genética , Mitosis , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Centrómero/genética , Centrómero/metabolismo , Secuencia Rica en GC , Proteínas de Choque Térmico/metabolismo , Unión Proteica , Saccharomyces cerevisiae
8.
Front Genet ; 12: 710143, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34408775

RESUMEN

Humans are regularly and continuously exposed to ionizing radiation from both natural and artificial sources. Cumulating evidence shows adverse effects of ionizing radiation on both male and female reproductive systems, including reduction of testis weight and sperm count and reduction of female germ cells and premature ovarian failure. While most of the observed effects were caused by DNA damage and disturbance of DNA repairment, ionizing radiation may also alter DNA methylation, histone, and chromatin modification, leading to epigenetic changes and transgenerational effects. However, the molecular mechanisms underlying the epigenetic changes and transgenerational reproductive impairment induced by low-dose radiation remain largely unknown. In this study, two different types of human ovarian cells and two different types of testicular cells were exposed to low dose of ionizing radiation, followed by bioinformatics analysis (including gene ontology functional analysis and Ingenuity Pathway Analysis), to unravel and compare epigenetic effects and pathway changes in male and female reproductive cells induced by ionizing radiation. Our findings showed that the radiation could alter the expression of gene cluster related to DNA damage responses through the control of MYC. Furthermore, ionizing radiation could lead to gender-specific reproductive impairment through deregulation of different gene networks. More importantly, the observed epigenetic modifications induced by ionizing radiation are mediated through the alteration of chromatin remodeling and telomere function. This study, for the first time, demonstrated that ionizing radiation may alter the epigenome of germ cells, leading to transgenerational reproductive impairments, and correspondingly call for research in this new emerging area which remains almost unknown.

9.
Nucleic Acids Res ; 49(16): 9154-9173, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-33872374

RESUMEN

Foreign DNA microinjected into the Caenorhabditis elegans syncytial gonad forms episomal extra-chromosomal arrays, or artificial chromosomes (ACs), in embryos. Short, linear DNA fragments injected concatemerize into high molecular weight (HMW) DNA arrays that are visible as punctate DAPI-stained foci in oocytes, and they undergo chromatinization and centromerization in embryos. The inner centromere, inner kinetochore and spindle checkpoint components, including AIR-2, CENP-AHCP-3, Mis18BP1KNL-2 and BUB-1, respectively, assemble onto the nascent ACs during the first mitosis. The DNA replication efficiency of ACs improves over several cell cycles, which correlates with the improvement of kinetochore bi-orientation and proper segregation of ACs. Depletion of condensin II subunits, like CAPG-2 and SMC-4, but not the replicative helicase component, MCM-2, reduces de novo CENP-AHCP-3 level on nascent ACs. Furthermore, H3K9ac, H4K5ac and H4K12ac are highly enriched on newly chromatinized ACs. RbAp46/48LIN-53 and HAT-1, which affect the acetylation of histone H3 and H4, are essential for chromatinization, de novo centromere formation and segregation competency of nascent ACs. RbAp46/48LIN-53 or HAT-1 depletion causes the loss of both CENP-AHCP-3 and Mis18BP1KNL-2 initial deposition at de novo centromeres on ACs. This phenomenon is different from centromere maintenance on endogenous chromosomes, where Mis18BP1KNL-2 functions upstream of RbAp46/48LIN-53.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Cromosomas Artificiales/genética , Histona Acetiltransferasas/metabolismo , Cinetocoros/metabolismo , Proteínas Represoras/metabolismo , Acetilación , Animales , Caenorhabditis elegans , Proteína A Centromérica/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Replicación del ADN , Código de Histonas , Histonas/metabolismo , Componente 2 del Complejo de Mantenimiento de Minicromosoma/metabolismo , Mitosis
10.
Essays Biochem ; 64(2): 233-249, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32756873

RESUMEN

Artificial chromosomes (ACs), generated in yeast (YACs) and human cells (HACs), have facilitated our understanding of the trans-acting proteins, cis-acting elements, such as the centromere, and epigenetic environments that are necessary to maintain chromosome stability. The centromere is the unique chromosomal region that assembles the kinetochore and connects to microtubules to orchestrate chromosome movement during cell division. While monocentromeres are the most commonly characterized centromere organization found in studied organisms, diffused holocentromeres along the chromosome length are observed in some plants, insects and nematodes. Based on the well-established DNA microinjection method in holocentric Caenorhabditis elegans, concatemerization of foreign DNA can efficiently generate megabase-sized extrachromosomal arrays (Exs), or worm ACs (WACs), for analyzing the mechanisms of WAC formation, de novo centromere formation, and segregation through mitosis and meiosis. This review summarizes the structural, size and stability characteristics of WACs. Incorporating LacO repeats in WACs and expressing LacI::GFP allows real-time tracking of newly formed WACs in vivo, whereas expressing LacI::GFP-chromatin modifier fusions can specifically adjust the chromatin environment of WACs. The WACs mature from passive transmission to autonomous segregation by establishing a holocentromere efficiently in a few cell cycles. Importantly, WAC formation does not require any C. elegans genomic DNA sequence. Thus, DNA substrates injected can be changed to evaluate the effects of DNA sequence and structure in WAC segregation. By injecting a complex mixture of DNA, a less repetitive WAC can be generated and propagated in successive generations for DNA sequencing and analysis of the established holocentromere on the WAC.


Asunto(s)
Caenorhabditis elegans/genética , Centrómero/genética , Cromosomas Artificiales , Animales , Segregación Cromosómica , Meiosis , Mitosis
11.
Exp Cell Res ; 390(2): 111974, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32222413

RESUMEN

The formation of de novo centromeres on artificial chromosomes in humans (HACs) and fission yeast (SpYACs) has provided much insights to the epigenetic and genetic control on regional centromere establishment and maintenance. Similarly, the use of artificial chromosomes in point centromeric budding yeast Saccharomyces cerevisiae (ScYACs) and holocentric Caenorhabditis elegans (WACs) has revealed epigenetic regulation in the originally thought purely genetically-determined point centromeres and some centromeric DNA sequence features in holocentromeres, respectively. These relatively extreme and less characterized centromere organizations, on the endogenous chromosomes and artificial chromosomes, will be discussed and compared to the more well-studied regional centromere systems. This review will highlight some of the common epigenetic and genetic features in different centromere architectures, including the presence of the centromeric histone H3 variant, CENP-A or CenH3, centromeric and pericentric transcription, AT-richness and repetitiveness of centromeric DNA sequences.


Asunto(s)
Proteína A Centromérica/genética , Centrómero/metabolismo , Cromatina/química , Proteínas Cromosómicas no Histona/genética , Epigénesis Genética , Histonas/genética , Animales , Bombyx/genética , Bombyx/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Centrómero/ultraestructura , Proteína A Centromérica/metabolismo , Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Artificiales/química , Cromosomas Artificiales/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Zea mays/genética , Zea mays/metabolismo
12.
Cell Mol Life Sci ; 77(15): 2899-2917, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32008088

RESUMEN

The centromere is a specialized region on the chromosome that directs equal chromosome segregation. Centromeres are usually not defined by DNA sequences alone. How centromere formation and function are determined by epigenetics is still not fully understood. Active centromeres are often marked by the presence of centromeric-specific histone H3 variant, centromere protein A (CENP-A). How CENP-A is assembled into the centromeric chromatin during the cell cycle and propagated to the next cell cycle or the next generation to maintain the centromere function has been intensively investigated. In this review, we summarize current understanding of how post-translational modifications of CENP-A and other centromere proteins, centromeric and pericentric histone modifications, non-coding transcription and transcripts contribute to centromere function, and discuss their intricate relationships and potential feedback mechanisms.


Asunto(s)
Centrómero/metabolismo , Epigénesis Genética , Proteína A Centromérica/metabolismo , Heterocromatina/química , Heterocromatina/metabolismo , Histonas/metabolismo , Humanos , Procesamiento Proteico-Postraduccional , Interferencia de ARN
13.
Chromosoma ; 129(1): 1-24, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31781852

RESUMEN

Endogenous chromosomes contain centromeres to direct equal chromosomal segregation in mitosis and meiosis. The location and function of existing centromeres is usually maintained through cell cycles and generations. Recent studies have investigated how the centromere-specific histone H3 variant CENP-A is assembled and replenished after DNA replication to epigenetically propagate the centromere identity. However, existing centromeres occasionally become inactivated, with or without change in underlying DNA sequences, or lost after chromosomal rearrangements, resulting in acentric chromosomes. New centromeres, known as neocentromeres, may form on ectopic, non-centromeric chromosomal regions to rescue acentric chromosomes from being lost, or form dicentric chromosomes if the original centromere is still active. In addition, de novo centromeres can form after chromatinization of purified DNA that is exogenously introduced into cells. Here, we review the phenomena of naturally occurring and experimentally induced new centromeres and summarize the genetic (DNA sequence) and epigenetic features of these new centromeres. We compare the characteristics of new and native centromeres to understand whether there are different requirements for centromere establishment and propagation. Based on our understanding of the mechanisms of new centromere formation, we discuss the perspectives of developing more stably segregating human artificial chromosomes to facilitate gene delivery in therapeutics and research.


Asunto(s)
Centrómero/genética , Epigénesis Genética , Epigenómica , Genómica , Animales , Centrómero/metabolismo , Cromatina/genética , Cromatina/metabolismo , Inestabilidad Cromosómica , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Aberraciones Cromosómicas , Cromosomas Artificiales Humanos , Cromosomas de las Plantas , Susceptibilidad a Enfermedades , Epigenómica/métodos , Evolución Molecular , Regulación de la Expresión Génica , Genómica/métodos , Humanos , Meiosis/genética , Mitosis/genética , Plantas/genética , Eliminación de Secuencia
14.
Mol Cell ; 76(4): 660-675.e9, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31542297

RESUMEN

Histone posttranslational modifications (PTMs) regulate chromatin structure and dynamics during various DNA-associated processes. Here, we report that lysine glutarylation (Kglu) occurs at 27 lysine residues on human core histones. Using semi-synthetic glutarylated histones, we show that an evolutionarily conserved Kglu at histone H4K91 destabilizes nucleosome in vitro. In Saccharomyces cerevisiae, the replacement of H4K91 by glutamate that mimics Kglu influences chromatin structure and thereby results in a global upregulation of transcription and defects in cell-cycle progression, DNA damage repair, and telomere silencing. In mammalian cells, H4K91glu is mainly enriched at promoter regions of highly expressed genes. A downregulation of H4K91glu is tightly associated with chromatin condensation during mitosis and in response to DNA damage. The cellular dynamics of H4K91glu is controlled by Sirt7 as a deglutarylase and KAT2A as a glutaryltransferase. This study designates a new histone mark (Kglu) as a new regulatory mechanism for chromatin dynamics.


Asunto(s)
Ensamble y Desensamble de Cromatina , Daño del ADN , Glutaratos/metabolismo , Histonas/metabolismo , Mitosis , Nucleosomas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Animales , Células HEK293 , Células HL-60 , Células HeLa , Células Hep G2 , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Humanos , Lisina , Ratones , Nucleosomas/genética , Células RAW 264.7 , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Sirtuinas/genética , Sirtuinas/metabolismo , Factores de Tiempo
15.
Curr Genet ; 65(5): 1165-1171, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31073666

RESUMEN

To ensure proper chromosome segregation during cell division, the centromere in many organisms is transcribed to produce a low level of long non-coding RNA to regulate the activity of the kinetochore. In the budding yeast point centromere, our recent work has shown that the level of centromeric RNAs (cenRNAs) is tightly regulated and repressed by the kinetochore protein Cbf1 and histone H2A variant H2A.ZHtz1, and de-repressed during S phase of the cell cycle. Too little or too much cenRNAs will disrupt centromere activity. Here, we discuss the current advance in the understanding of the action and regulation of cenRNAs at the point centromere of Saccharomyces cerevisiae. We further show that budding yeast cenRNAs are cryptic unstable transcripts (CUTs) that can be degraded by the nuclear RNA decay pathway. CenRNA provides an example that even CUTs, when present at the right time with the right level, can serve important cellular functions.


Asunto(s)
Centrómero/genética , Epigénesis Genética , ARN no Traducido/genética , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica , Inestabilidad Genómica , Histonas/metabolismo , Transcripción Genética
16.
Proc Natl Acad Sci U S A ; 116(13): 6270-6279, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30850541

RESUMEN

In budding yeast, which possesses simple point centromeres, we discovered that all of its centromeres express long noncoding RNAs (cenRNAs), especially in S phase. Induction of cenRNAs coincides with CENP-ACse4 loading time and is dependent on DNA replication. Centromeric transcription is repressed by centromere-binding factor Cbf1 and histone H2A variant H2A.ZHtz1 Deletion of CBF1 and H2A.ZHTZ1 results in an up-regulation of cenRNAs; an increased loss of a minichromosome; elevated aneuploidy; a down-regulation of the protein levels of centromeric proteins CENP-ACse4, CENP-A chaperone HJURPScm3, CENP-CMif2, SurvivinBir1, and INCENPSli15; and a reduced chromatin localization of CENP-ACse4, CENP-CMif2, and Aurora BIpl1 When the RNA interference system was introduced to knock down all cenRNAs from the endogenous chromosomes, but not the cenRNA from the circular minichromosome, an increase in minichromosome loss was still observed, suggesting that cenRNA functions in trans to regulate centromere activity. CenRNA knockdown partially alleviates minichromosome loss in cbf1Δ, htz1Δ, and cbf1Δ htz1Δ in a dose-dependent manner, demonstrating that cenRNA level is tightly regulated to epigenetically control point centromere function.


Asunto(s)
Centrómero/metabolismo , Segregación Cromosómica/fisiología , ARN no Traducido/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo , Aurora Quinasas/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas Portadoras/metabolismo , Centrómero/genética , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas Fúngicos , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Eliminación de Gen , Histonas/genética , Histonas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Interferencia de ARN/fisiología , Fase S , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Regulación hacia Arriba
17.
Epigenetics Chromatin ; 11(1): 16, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29653589

RESUMEN

BACKGROUND: The centromere is the specialized chromatin region that directs chromosome segregation. The kinetochore assembles on the centromere, attaching chromosomes to microtubules in mitosis. The centromere position is usually maintained through cell cycles and generations. However, new centromeres, known as neocentromeres, can occasionally form on ectopic regions when the original centromere is inactivated or lost due to chromosomal rearrangements. Centromere repositioning can occur during evolution. Moreover, de novo centromeres can form on exogenously transformed DNA in human cells at a low frequency, which then segregates faithfully as human artificial chromosomes (HACs). How centromeres are maintained, inactivated and activated is unclear. A conserved histone H3 variant, CENP-A, epigenetically marks functional centromeres, interspersing with H3. Several histone modifications enriched at centromeres are required for centromere function, but their role in new centromere formation is less clear. Studying the mechanism of new centromere formation has been challenging because these events are difficult to detect immediately, requiring weeks for HAC selection. RESULTS: DNA injected into the Caenorhabditis elegans gonad can concatemerize to form artificial chromosomes (ACs) in embryos, which first undergo passive inheritance, but soon autonomously segregate within a few cell cycles, more rapidly and frequently than HACs. Using this in vivo model, we injected LacO repeats DNA, visualized ACs by expressing GFP::LacI, and monitored equal AC segregation in real time, which represents functional centromere formation. Histone H3K9 and H4 acetylations are enriched on new ACs when compared to endogenous chromosomes. By fusing histone deacetylase HDA-1 to GFP::LacI, we tethered HDA-1 to ACs specifically, reducing AC histone acetylations, reducing AC equal segregation frequency, and reducing initial kinetochroe protein CENP-AHCP-3 and NDC-80 deposition, indicating that histone acetylations facilitate efficient centromere establishment. Similarly, inhibition of RNA polymerase II-mediated transcription also delays initial CENP-AHCP-3 loading. CONCLUSIONS: Acetylated histones on chromatin and transcription can create an open chromatin environment, enhancing nucleosome disassembly and assembly, and potentially contribute to centromere establishment. Alternatively, acetylation of soluble H4 may stimulate the initial deposition of CENP-AHCP-3-H4 nucleosomes. Our findings shed light on the mechanism of de novo centromere activation.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Centrómero/metabolismo , Proteínas de Choque Térmico/metabolismo , Histonas/metabolismo , Acetilación , Animales , Animales Modificados Genéticamente , Cromosomas Artificiales/genética , Cromosomas Artificiales/metabolismo , Transcripción Genética
18.
Elife ; 62017 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-29058668

RESUMEN

Bre1, a conserved E3 ubiquitin ligase in Saccharomyces cerevisiae, together with its interacting partner Lge1, are responsible for histone H2B monoubiquitination, which regulates transcription, DNA replication, and DNA damage response and repair, ensuring the structural integrity of the genome. Deletion of BRE1 or LGE1 also results in whole chromosome instability. We discovered a novel role for Bre1, Lge1 and H2Bub1 in chromosome segregation and sister chromatid cohesion. Bre1's function in G1 and S phases contributes to cohesion establishment, but it is not required for cohesion maintenance in G2 phase. Bre1 is dispensable for the loading of cohesin complex to chromatin in G1, but regulates the localization of replication factor Mcm10 and cohesion establishment factors Ctf4, Ctf18 and Eco1 to early replication origins in G1 and S phases, and promotes cohesin subunit Smc3 acetylation for cohesion stabilization. H2Bub1 epigenetically marks the origins, potentially signaling the coupling of DNA replication and cohesion establishment.


Asunto(s)
Ciclo Celular , Cromátides/metabolismo , Replicación del ADN , ADN de Hongos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/fisiología , Segregación Cromosómica
19.
Aquat Toxicol ; 177: 454-63, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27399157

RESUMEN

Hypoxia occurs when dissolved oxygen (DO) falls below 2.8mgL(-1) in aquatic environments. It can cause trans-generational effects not only in fish, but also in the water fleas Daphnia. In this study, transcriptome sequencing analysis was employed to identify transcriptomic alterations induced by hypoxia in embryos of Daphnia magna, with an aim to investigate the mechanism underlying the trans-generational effects caused by hypoxia in Daphnia. The embryos (F1) were collected from adults (F0) that were previously exposed to hypoxia (or normoxia) for their whole life. De novo transcriptome assembly identified 18270 transcripts that were matched to the UniProtKB/Swiss-Prot database and resulted in 7419 genes. Comparative transcriptome analysis showed 124 differentially expressed genes, including 70 up- and 54 down-regulated genes under hypoxia. Gene ontology analysis further highlighted three clusters of genes which revealed acclimatory changes of haemoglobin, suppression in vitellogenin gene family and histone modifications. Specifically, the expressions of histone H2B, H3, H4 and histone deacetylase 4 (HDAC4) were deregulated. This study suggested that trans-generational effects of hypoxia on Daphnia may be mediated through epigenetic regulations of histone modifications.


Asunto(s)
Hipoxia , Animales , Análisis por Conglomerados , Hibridación Genómica Comparativa , Daphnia/efectos de los fármacos , Daphnia/crecimiento & desarrollo , Daphnia/metabolismo , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Hemoglobinas/metabolismo , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Análisis de Secuencia de ADN , Transcriptoma , Vitelogeninas/genética , Vitelogeninas/metabolismo
20.
Cell Rep ; 14(8): 1819-28, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26904949

RESUMEN

Centromeres, the specialized chromosomal regions for recruiting kinetochores and directing chromosome segregation, are epigenetically marked by a centromeric histone H3 variant, CENP-A. To maintain centromere identity through cell cycles, CENP-A diluted during DNA replication is replenished. The licensing factor M18BP1(KNL-2) is known to recruit CENP-A to holocentromeres. Here, we show that RbAp46/48(LIN-53), a conserved histone chaperone, is required for CENP-A(HCP-3) localization in holocentric Caenorhabditis elegans. Indeed, RbAp46/48(LIN-53) and CENP-A(HCP-3) localizations are interdependent. RbAp46/48(LIN-53) localizes to the centromere during metaphase in a CENP-A(HCP-3)- and M18BP1(KNL-2)-dependent manner, suggesting CENP-A(HCP-3) loading may occur before anaphase. RbAp46/48(LIN-53) does not function at the centromere through histone acetylation, H3K27 trimethylation, or its known chromatin-modifying complexes. RbAp46/48(LIN-53) may function independently to escort CENP-A(HCP-3) for holocentromere assembly but is dispensable for other kinetochore protein recruitment. Nonetheless, depletion of RbAp46/48(LIN-53) leads to anaphase bridges and chromosome missegregation. This study unravels the holocentromere assembly hierarchy and its conservation with monocentromeres.


Asunto(s)
Autoantígenos/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Centrómero/metabolismo , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cinetocoros/metabolismo , Proteínas Represoras/metabolismo , Anafase , Animales , Autoantígenos/genética , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Caenorhabditis elegans/ultraestructura , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Centrómero/ultraestructura , Proteína A Centromérica , Cromatina/ultraestructura , Proteínas Cromosómicas no Histona/genética , Segregación Cromosómica , Replicación del ADN , Embrión no Mamífero , Epigénesis Genética , Histonas/genética , Histonas/metabolismo , Cinetocoros/ultraestructura , Metafase , Transporte de Proteínas , Proteínas Represoras/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA