Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Nat Genet ; 56(4): 585-594, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38553553

RESUMEN

We performed whole-genome sequencing (WGS) in 327 children with cerebral palsy (CP) and their biological parents. We classified 37 of 327 (11.3%) children as having pathogenic/likely pathogenic (P/LP) variants and 58 of 327 (17.7%) as having variants of uncertain significance. Multiple classes of P/LP variants included single-nucleotide variants (SNVs)/indels (6.7%), copy number variations (3.4%) and mitochondrial mutations (1.5%). The COL4A1 gene had the most P/LP SNVs. We also analyzed two pediatric control cohorts (n = 203 trios and n = 89 sib-pair families) to provide a baseline for de novo mutation rates and genetic burden analyses, the latter of which demonstrated associations between de novo deleterious variants and genes related to the nervous system. An enrichment analysis revealed previously undescribed plausible candidate CP genes (SMOC1, KDM5B, BCL11A and CYP51A1). A multifactorial CP risk profile and substantial presence of P/LP variants combine to support WGS in the diagnostic work-up across all CP and related phenotypes.


Asunto(s)
Parálisis Cerebral , Variaciones en el Número de Copia de ADN , Humanos , Niño , Variaciones en el Número de Copia de ADN/genética , Parálisis Cerebral/genética , Mutación , Secuenciación Completa del Genoma , Genómica
2.
EBioMedicine ; 101: 105027, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418263

RESUMEN

BACKGROUND: Cardiomyopathy is a clinically and genetically heterogeneous heart condition that can lead to heart failure and sudden cardiac death in childhood. While it has a strong genetic basis, the genetic aetiology for over 50% of cardiomyopathy cases remains unknown. METHODS: In this study, we analyse the characteristics of tandem repeats from genome sequence data of unrelated individuals diagnosed with cardiomyopathy from Canada and the United Kingdom (n = 1216) and compare them to those found in the general population. We perform burden analysis to identify genomic and epigenomic features that are impacted by rare tandem repeat expansions (TREs), and enrichment analysis to identify functional pathways that are involved in the TRE-associated genes in cardiomyopathy. We use Oxford Nanopore targeted long-read sequencing to validate repeat size and methylation status of one of the most recurrent TREs. We also compare the TRE-associated genes to those that are dysregulated in the heart tissues of individuals with cardiomyopathy. FINDINGS: We demonstrate that tandem repeats that are rarely expanded in the general population are predominantly expanded in cardiomyopathy. We find that rare TREs are disproportionately present in constrained genes near transcriptional start sites, have high GC content, and frequently overlap active enhancer H3K27ac marks, where expansion-related DNA methylation may reduce gene expression. We demonstrate the gene silencing effect of expanded CGG tandem repeats in DIP2B through promoter hypermethylation. We show that the enhancer-associated loci are found in genes that are highly expressed in human cardiomyocytes and are differentially expressed in the left ventricle of the heart in individuals with cardiomyopathy. INTERPRETATION: Our findings highlight the underrecognized contribution of rare tandem repeat expansions to the risk of cardiomyopathy and suggest that rare TREs contribute to ∼4% of cardiomyopathy risk. FUNDING: Government of Ontario (RKCY), The Canadian Institutes of Health Research PJT 175329 (RKCY), The Azrieli Foundation (RKCY), SickKids Catalyst Scholar in Genetics (RKCY), The University of Toronto McLaughlin Centre (RKCY, SM), Ted Rogers Centre for Heart Research (SM), Data Sciences Institute at the University of Toronto (SM), The Canadian Institutes of Health Research PJT 175034 (SM), The Canadian Institutes of Health Research ENP 161429 under the frame of ERA PerMed (SM, RL), Heart and Stroke Foundation of Ontario & Robert M Freedom Chair in Cardiovascular Science (SM), Bitove Family Professorship of Adult Congenital Heart Disease (EO), Canada Foundation for Innovation (SWS, JR), Canada Research Chair (PS), Genome Canada (PS, JR), The Canadian Institutes of Health Research (PS).


Asunto(s)
Cardiomiopatías , Cardiopatías Congénitas , Humanos , Adulto , Cardiopatías Congénitas/genética , Secuencias Repetidas en Tándem/genética , Metilación de ADN , Cardiomiopatías/genética , Ontario , Proteínas del Tejido Nervioso/genética
3.
BMC Med Genomics ; 16(1): 281, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37940981

RESUMEN

BACKGROUND: Elevated triglyceride (TG) levels are a heritable and modifiable risk factor for cardiovascular disease and have well-established associations with common genetic variation captured in a polygenic risk score (PRS). In young adulthood, the 22q11.2 microdeletion conveys a 2-fold increased risk for mild-moderate hypertriglyceridemia. This study aimed to assess the role of the TG-PRS in individuals with this elevated baseline risk for mild-moderate hypertriglyceridemia. METHODS: We studied a deeply phenotyped cohort of adults (n = 157, median age 34 years) with a 22q11.2 microdeletion and available genome sequencing, lipid level, and other clinical data. The association between a previously developed TG-PRS and TG levels was assessed using a multivariable regression model adjusting for effects of sex, BMI, and other covariates. We also constructed receiver operating characteristic (ROC) curves using logistic regression models to assess the ability of TG-PRS and significant clinical variables to predict mild-moderate hypertriglyceridemia status. RESULTS: The TG-PRS was a significant predictor of TG-levels (p = 1.52E-04), along with male sex and BMI, in a multivariable model (pmodel = 7.26E-05). The effect of TG-PRS appeared to be slightly stronger in individuals with obesity (BMI ≥ 30) (beta = 0.4617) than without (beta = 0.1778), in a model unadjusted for other covariates (p-interaction = 0.045). Among ROC curves constructed, the inclusion of TG-PRS, sex, and BMI as predictor variables produced the greatest area under the curve (0.749) for classifying those with mild-moderate hypertriglyceridemia, achieving an optimal sensitivity and specificity of 0.746 and 0.707, respectively. CONCLUSIONS: These results demonstrate that in addition to significant effects of sex and BMI, genome-wide common variation captured in a PRS also contributes to the variable expression of the 22q11.2 microdeletion with respect to elevated TG levels.


Asunto(s)
Enfermedades Cardiovasculares , Hipertrigliceridemia , Adulto , Humanos , Masculino , Adulto Joven , Factores de Riesgo , Obesidad , Hipertrigliceridemia/genética , Triglicéridos , Estudio de Asociación del Genoma Completo
6.
Hum Mol Genet ; 32(15): 2411-2421, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37154571

RESUMEN

We assessed the relationship of gene copy number variation (CNV) in mental health/neurodevelopmental traits and diagnoses, physical health and cognition in a community sample of 7100 unrelated children and youth of European or East Asian ancestry (Spit for Science). Clinically significant or susceptibility CNVs were present in 3.9% of participants and were associated with elevated scores on a continuous measure of attention-deficit/hyperactivity disorder (ADHD) traits (P = 5.0 × 10-3), longer response inhibition (a cognitive deficit found in several mental health and neurodevelopmental disorders; P = 1.0 × 10-2) and increased prevalence of mental health diagnoses (P = 1.9 × 10-6, odds ratio: 3.09), specifically ADHD, autism spectrum disorder anxiety and learning problems/learning disorder (P's < 0.01). There was an increased burden of rare deletions in gene-sets related to brain function or expression in brain associated with more ADHD traits. With the current mental health crisis, our data established a baseline for delineating genetic contributors in pediatric-onset conditions.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Trastorno del Espectro Autista , Adolescente , Humanos , Niño , Salud Mental , Variaciones en el Número de Copia de ADN/genética , Trastorno del Espectro Autista/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Trastorno por Déficit de Atención con Hiperactividad/epidemiología , Trastorno por Déficit de Atención con Hiperactividad/genética , Dosificación de Gen
7.
Nature ; 613(7942): 96-102, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36517591

RESUMEN

Expansion of a single repetitive DNA sequence, termed a tandem repeat (TR), is known to cause more than 50 diseases1,2. However, repeat expansions are often not explored beyond neurological and neurodegenerative disorders. In some cancers, mutations accumulate in short tracts of TRs, a phenomenon termed microsatellite instability; however, larger repeat expansions have not been systematically analysed in cancer3-8. Here we identified TR expansions in 2,622 cancer genomes spanning 29 cancer types. In seven cancer types, we found 160 recurrent repeat expansions (rREs), most of which (155/160) were subtype specific. We found that rREs were non-uniformly distributed in the genome with enrichment near candidate cis-regulatory elements, suggesting a potential role in gene regulation. One rRE, a GAAA-repeat expansion, located near a regulatory element in the first intron of UGT2B7 was detected in 34% of renal cell carcinoma samples and was validated by long-read DNA sequencing. Moreover, in preliminary experiments, treating cells that harbour this rRE with a GAAA-targeting molecule led to a dose-dependent decrease in cell proliferation. Overall, our results suggest that rREs may be an important but unexplored source of genetic variation in human cancer, and we provide a comprehensive catalogue for further study.


Asunto(s)
Expansión de las Repeticiones de ADN , Genoma Humano , Neoplasias , Humanos , Secuencia de Bases , Expansión de las Repeticiones de ADN/genética , Genoma Humano/genética , Neoplasias/clasificación , Neoplasias/genética , Neoplasias/patología , Análisis de Secuencia de ADN , Regulación de la Expresión Génica , Elementos Reguladores de la Transcripción/genética , Intrones/genética , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Proliferación Celular/efectos de los fármacos , Reproducibilidad de los Resultados
8.
Mol Psychiatry ; 28(1): 475-482, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36380236

RESUMEN

Tandem repeat expansions (TREs) are associated with over 60 monogenic disorders and have recently been implicated in complex disorders such as cancer and autism spectrum disorder. The role of TREs in schizophrenia is now emerging. In this study, we have performed a genome-wide investigation of TREs in schizophrenia. Using genome sequence data from 1154 Swedish schizophrenia cases and 934 ancestry-matched population controls, we have detected genome-wide rare (<0.1% population frequency) TREs that have motifs with a length of 2-20 base pairs. We find that the proportion of individuals carrying rare TREs is significantly higher in the schizophrenia group. There is a significantly higher burden of rare TREs in schizophrenia cases than in controls in genic regions, particularly in postsynaptic genes, in genes overlapping brain expression quantitative trait loci, and in brain-expressed genes that are differentially expressed between schizophrenia cases and controls. We demonstrate that TRE-associated genes are more constrained and primarily impact synaptic and neuronal signaling functions. These results have been replicated in an independent Canadian sample that consisted of 252 schizophrenia cases of European ancestry and 222 ancestry-matched controls. Our results support the involvement of rare TREs in schizophrenia etiology.


Asunto(s)
Trastorno del Espectro Autista , Esquizofrenia , Humanos , Esquizofrenia/genética , Estudio de Asociación del Genoma Completo , Canadá , Frecuencia de los Genes , Predisposición Genética a la Enfermedad/genética
9.
Nat Commun ; 13(1): 6463, 2022 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-36309498

RESUMEN

Defining different genetic subtypes of autism spectrum disorder (ASD) can enable the prediction of developmental outcomes. Based on minor physical and major congenital anomalies, we categorize 325 Canadian children with ASD into dysmorphic and nondysmorphic subgroups. We develop a method for calculating a patient-level, genome-wide rare variant score (GRVS) from whole-genome sequencing (WGS) data. GRVS is a sum of the number of variants in morphology-associated coding and non-coding regions, weighted by their effect sizes. Probands with dysmorphic ASD have a significantly higher GRVS compared to those with nondysmorphic ASD (P = 0.03). Using the polygenic transmission disequilibrium test, we observe an over-transmission of ASD-associated common variants in nondysmorphic ASD probands (P = 2.9 × 10-3). These findings replicate using WGS data from 442 ASD probands with accompanying morphology data from the Simons Simplex Collection. Our results provide support for an alternative genomic classification of ASD subgroups using morphology data, which may inform intervention protocols.


Asunto(s)
Trastorno del Espectro Autista , Niño , Humanos , Trastorno del Espectro Autista/genética , Canadá/epidemiología , Genoma , Herencia Multifactorial/genética , Secuenciación Completa del Genoma , Predisposición Genética a la Enfermedad
10.
Front Genet ; 13: 812183, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495153

RESUMEN

The 22q11.2 deletion is associated with >20-fold increased risk for schizophrenia. The presence of gene DGCR8 in the 22q11.2 deletion region has suggested microRNA (miRNA) dysregulation as possibly contributing to this risk. We therefore investigated the role of miRNA target genes in the context of previously identified genome-wide risk for schizophrenia conveyed by additional copy number variation (CNV) in 22q11.2 deletion syndrome (22q11.2DS). Using a cohort of individuals with 22q11.2DS and documented additional rare CNVs overlapping protein coding genes, we compared those with schizophrenia (n = 100) to those with no psychotic illness (n = 118), assessing for rare CNVs that overlapped experimentally supported miRNA target genes. We further characterized the contributing miRNA target genes using gene set enrichment analyses and identified the miRNAs most implicated. Consistent with our hypothesis, we found a significantly higher proportion of individuals in the schizophrenia than in the non-psychotic group to have an additional rare CNV that overlapped one or more miRNA target genes (odds ratio = 2.12, p = 0.0138). Gene set analyses identified an enrichment of FMRP targets and genes involved in nervous system development and postsynaptic density amongst these miRNA target genes in the schizophrenia group. The miRNAs most implicated included miR-17-5p, miR-34a-5p and miR-124-3p. These results provide initial correlational evidence in support of a possible role for miRNA perturbation involving genes affected by rare genome-wide CNVs in the elevated risk for schizophrenia in 22q11.2DS, consistent with the multi-hit and multi-layered genetic mechanisms implicated in this and other forms of schizophrenia.

11.
Mol Psychiatry ; 27(9): 3692-3698, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35546631

RESUMEN

Tandem repeat expansions (TREs) can cause neurological diseases but their impact in schizophrenia is unclear. Here we analyzed genome sequences of adults with schizophrenia and found that they have a higher burden of TREs that are near exons and rare in the general population, compared with non-psychiatric controls. These TREs are disproportionately found at loci known to be associated with schizophrenia from genome-wide association studies, in individuals with clinically-relevant genetic variants at other schizophrenia loci, and in families where multiple individuals have schizophrenia. We showed that rare TREs in schizophrenia may impact synaptic functions by disrupting the splicing process of their associated genes in a loss-of-function manner. Our findings support the involvement of genome-wide rare TREs in the polygenic nature of schizophrenia.


Asunto(s)
Esquizofrenia , Adulto , Humanos , Esquizofrenia/genética , Esquizofrenia/epidemiología , Estudio de Asociación del Genoma Completo , Predisposición Genética a la Enfermedad/genética , Herencia Multifactorial/genética , Secuencias Repetidas en Tándem , Polimorfismo de Nucleótido Simple/genética
12.
Genome Res ; 32(1): 1-27, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34965938

RESUMEN

Expansions of gene-specific DNA tandem repeats (TRs), first described in 1991 as a disease-causing mutation in humans, are now known to cause >60 phenotypes, not just disease, and not only in humans. TRs are a common form of genetic variation with biological consequences, observed, so far, in humans, dogs, plants, oysters, and yeast. Repeat diseases show atypical clinical features, genetic anticipation, and multiple and partially penetrant phenotypes among family members. Discovery of disease-causing repeat expansion loci accelerated through technological advances in DNA sequencing and computational analyses. Between 2019 and 2021, 17 new disease-causing TR expansions were reported, totaling 63 TR loci (>69 diseases), with a likelihood of more discoveries, and in more organisms. Recent and historical lessons reveal that properly assessed clinical presentations, coupled with genetic and biological awareness, can guide discovery of disease-causing unstable TRs. We highlight critical but underrecognized aspects of TR mutations. Repeat motifs may not be present in current reference genomes but will be in forthcoming gapless long-read references. Repeat motif size can be a single nucleotide to kilobases/unit. At a given locus, repeat motif sequence purity can vary with consequence. Pathogenic repeats can be "insertions" within nonpathogenic TRs. Expansions, contractions, and somatic length variations of TRs can have clinical/biological consequences. TR instabilities occur in humans and other organisms. TRs can be epigenetically modified and/or chromosomal fragile sites. We discuss the expanding field of disease-associated TR instabilities, highlighting prospects, clinical and genetic clues, tools, and challenges for further discoveries of disease-causing TR instabilities and understanding their biological and pathological impacts-a vista that is about to expand.


Asunto(s)
Genómica , Secuencias Repetidas en Tándem , Animales , Secuencia de Bases , Perros , Humanos , Análisis de Secuencia de ADN , Secuencias Repetidas en Tándem/genética
13.
Cell Rep ; 37(10): 110078, 2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34879276

RESUMEN

Ongoing inchworm-like CAG and CGG repeat expansions in brains, arising by aberrant processing of slipped DNAs, may drive Huntington's disease, fragile X syndrome, and autism. FAN1 nuclease modifies hyper-expansion rates by unknown means. We show that FAN1, through iterative cycles, binds, dimerizes, and cleaves slipped DNAs, yielding striking exo-nuclease pauses along slip-outs: 5'-C↓A↓GC↓A↓G-3' and 5'-C↓T↓G↓C↓T↓G-3'. CAG excision is slower than CTG and requires intra-strand A·A and T·T mismatches. Fully paired hairpins arrested excision, whereas disease-delaying CAA interruptions further slowed excision. Endo-nucleolytic cleavage is insensitive to slip-outs. Rare FAN1 variants are found in individuals with autism with CGG/CCG expansions, and CGG/CCG slip-outs show exo-nuclease pauses. The slip-out-specific ligand, naphthyridine-azaquinolone, which induces contractions of expanded repeats in vivo, requires FAN1 for its effect, and protects slip-outs from FAN1 exo-, but not endo-, nucleolytic digestion. FAN1's inchworm pausing of slip-out excision rates is well suited to modify inchworm expansion rates, which modify disease onset and progression.


Asunto(s)
Trastorno del Espectro Autista/genética , Reparación de la Incompatibilidad de ADN , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Inestabilidad Genómica , Enfermedad de Huntington/genética , Enzimas Multifuncionales/metabolismo , Ataxias Espinocerebelosas/genética , Expansión de Repetición de Trinucleótido , Animales , Trastorno del Espectro Autista/enzimología , Línea Celular Tumoral , Progresión de la Enfermedad , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Predisposición Genética a la Enfermedad , Humanos , Enfermedad de Huntington/enzimología , Enzimas Multifuncionales/genética , Mutación , Conformación de Ácido Nucleico , Fenotipo , Unión Proteica , Células Sf9 , Ataxias Espinocerebelosas/enzimología
14.
Brain Commun ; 3(3): fcab207, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34622207

RESUMEN

Epilepsies are a group of common neurological disorders with a substantial genetic basis. Despite this, the molecular diagnosis of epilepsies remains challenging due to its heterogeneity. Studies utilizing whole-genome sequencing may provide additional insights into genetic causes of epilepsies of unknown aetiology. Whole-genome sequencing was used to evaluate a cohort of adults with unexplained developmental and epileptic encephalopathies (n = 30), for whom prior genetic tests, including whole-exome sequencing in some cases, were negative or inconclusive. Rare single nucleotide variants, insertions/deletions, copy number variants and tandem repeat expansions were analysed. Seven pathogenic or likely pathogenic single nucleotide variants, and two pathogenic deleterious copy number variants were identified in nine patients (32.1% of the cohort). One of the copy number variants, identified in a patient with Lennox-Gastaut syndrome, was too small to be detected by chromosomal microarray techniques. We also identified two tandem repeat expansions with clinical implications in two other patients with Lennox-Gastaut syndrome: a CGG repeat expansion in the 5'untranslated region of DIP2B, and a CTG expansion in ATXN8OS (previously implicated in spinocerebellar ataxia type 8). Three patients had KCNA2 pathogenic variants. One of them died of sudden unexpected death in epilepsy. The other two patients had, in addition to a KCNA2 variant, a second de novo variant impacting potential epilepsy-relevant genes (KCNIP4 and UBR5). Overall, whole-genome sequencing provided a genetic explanation in 32.1% of the total cohort. This is also the first report of coding and non-coding tandem repeat expansions identified in patients with Lennox-Gastaut syndrome. This study demonstrates that using whole-genome sequencing, the examination of multiple types of rare genetic variation, including those found in the non-coding region of the genome, can help resolve unexplained epilepsies.

15.
Transl Psychiatry ; 11(1): 84, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33526774

RESUMEN

The range of genetic variation with potential clinical implications in schizophrenia, beyond rare copy number variants (CNVs), remains uncertain. We therefore analyzed genome sequencing data for 259 unrelated adults with schizophrenia from a well-characterized community-based cohort previously examined with chromosomal microarray for CNVs (none with 22q11.2 deletions). We analyzed these genomes for rare high-impact variants considered causal for neurodevelopmental disorders, including single-nucleotide variants (SNVs) and small insertions/deletions (indels), for potential clinical relevance based on findings for neurodevelopmental disorders. Also, we investigated a novel variant type, tandem repeat expansions (TREs), in 45 loci known to be associated with monogenic neurological diseases. We found several of these variants in this schizophrenia population suggesting that these variants have a wider clinical spectrum than previously thought. In addition to known pathogenic CNVs, we identified 11 (4.3%) individuals with clinically relevant SNVs/indels in genes converging on schizophrenia-relevant pathways. Clinical yield was significantly enriched in females and in those with broadly defined learning/intellectual disabilities. Genome analyses also identified variants with potential clinical implications, including TREs (one in DMPK; two in ATXN8OS) and ultra-rare loss-of-function SNVs in ZMYM2 (a novel candidate gene for schizophrenia). Of the 233 individuals with no pathogenic CNVs, we identified rare high-impact variants (i.e., clinically relevant or with potential clinical implications) for 14 individuals (6.0%); some had multiple rare high-impact variants. Mean schizophrenia polygenic risk score was similar between individuals with and without clinically relevant rare genetic variation; common variants were not sufficient for clinical application. These findings broaden the individual and global picture of clinically relevant genetic risk in schizophrenia, and suggest the potential translational value of genome sequencing as a single genetic technology for schizophrenia.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Esquizofrenia , Adulto , Estudios de Cohortes , Variaciones en el Número de Copia de ADN , Femenino , Predisposición Genética a la Enfermedad , Humanos , Trastornos del Neurodesarrollo/genética , Esquizofrenia/genética
16.
Orphanet J Rare Dis ; 16(1): 6, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407644

RESUMEN

BACKGROUND: 7q11.23 duplication (Dup7) is one of the most frequent recurrent copy number variants (CNVs) in individuals with autism spectrum disorder (ASD), but based on gold-standard assessments, only 19% of Dup7 carriers have ASD, suggesting that additional genetic factors are necessary to manifest the ASD phenotype. To assess the contribution of additional genetic variants to the Dup7 phenotype, we conducted whole-genome sequencing analysis of 20 Dup7 carriers: nine with ASD (Dup7-ASD) and 11 without ASD (Dup7-non-ASD). RESULTS: We identified three rare variants of potential clinical relevance for ASD: a 1q21.1 microdeletion (Dup7-non-ASD) and two deletions which disrupted IMMP2L (one Dup7-ASD, one Dup7-non-ASD). There were no significant differences in gene-set or pathway variant burden between the Dup7-ASD and Dup7-non-ASD groups. However, overall intellectual ability negatively correlated with the number of rare loss-of-function variants present in nervous system development and membrane component pathways, and adaptive behaviour standard scores negatively correlated with the number of low-frequency likely-damaging missense variants found in genes expressed in the prenatal human brain. ASD severity positively correlated with the number of low frequency loss-of-function variants impacting genes expressed at low levels in the brain, and genes with a low level of intolerance. CONCLUSIONS: Our study suggests that in the presence of the same pathogenic Dup7 variant, rare and low frequency genetic variants act additively to contribute to components of the overall Dup7 phenotype.


Asunto(s)
Trastorno del Espectro Autista , Trastorno del Espectro Autista/genética , Deleción Cromosómica , Variaciones en el Número de Copia de ADN/genética , Femenino , Genómica , Humanos , Fenotipo , Embarazo
17.
Am J Med Genet A ; 185(4): 1120-1130, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33474825

RESUMEN

The Per family of genes functions as a primary circadian rhythm maintenance in the brain. Mutations in PER2 are associated with familial advanced sleep-phase syndrome 1 (FASPS1), and recently suggested in delayed sleep phase syndrome and idiopathic hypersomnia. The detection of PER2 variants in individuals with autism spectrum disorder (ASD) and without reported sleep disorders, has suggested a role of circadian-relevant genes in the pathophysiology of ASD. It remains unclear whether these individuals may have, in addition to ASD, an undiagnosed circadian rhythm sleep disorder. The MSSNG database was used to screen whole genome sequencing data of 5,102 individuals with ASD for putative mutations in PER2. Families identified were invited to complete sleep phenotyping consisting of a structured interview and two standardized sleep questionnaires: the Pittsburgh Sleep Quality Index and the Morningness-Eveningness Questionnaire. From 5,102 individuals with ASD, two nonsense, one frameshift, and one de novo missense PER2 variants were identified (0.08%). Of these four, none had a diagnosed sleep disorder. Three reported either a history of, or ongoing sleep disturbances, and one had symptoms highly suggestive of FASPS1 (as did a mutation carrier father without ASD). The individual with the missense variant did not report sleep concerns. The ASD and cognitive profiles of these individuals varied in severity and symptoms. The results support a possible role of PER2-related circadian rhythm disturbances in the dysregulation of sleep overall and sometimes FASPS1. The relationship between dysregulated sleep and the pathophysiology of ASD require further exploration.


Asunto(s)
Trastorno del Espectro Autista/genética , Proteínas Circadianas Period/genética , Trastornos del Sueño-Vigilia/genética , Sueño/genética , Adolescente , Trastorno del Espectro Autista/fisiopatología , Niño , Preescolar , Ritmo Circadiano/genética , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Mutación Missense/genética , Trastornos del Sueño-Vigilia/patología
18.
Mol Med ; 27(1): 3, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33413077

RESUMEN

BACKGROUND: Fetal growth restriction (FGR) is associated with increased risks for complications before, during, and after birth, in addition to risk of disease through to adulthood. Although placental insufficiency, failure to supply the fetus with adequate nutrients, underlies most cases of FGR, its causes are diverse and not fully understood. One of the few diagnosable causes of placental insufficiency in ongoing pregnancies is the presence of large chromosomal imbalances such as trisomy confined to the placenta; however, the impact of smaller copy number variants (CNVs) has not yet been adequately addressed. In this study, we confirm the importance of placental aneuploidy, and assess the potential contribution of CNVs to fetal growth. METHODS: We used molecular-cytogenetic approaches to identify aneuploidy in placentas from 101 infants born small-for-gestational age (SGA), typically used as a surrogate for FGR, and from 173 non-SGA controls from uncomplicated pregnancies. We confirmed aneuploidies and assessed mosaicism by microsatellite genotyping. We then profiled CNVs using high-resolution microarrays in a subset of 53 SGA and 61 control euploid placentas, and compared the load, impact, gene enrichment and clinical relevance of CNVs between groups. Candidate CNVs were confirmed using quantitative PCR. RESULTS: Aneuploidy was over tenfold more frequent in SGA-associated placentas compared to controls (11.9% vs. 1.1%; p = 0.0002, OR = 11.4, 95% CI 2.5-107.4), was confined to the placenta, and typically involved autosomes, whereas only sex chromosome abnormalities were observed in controls. We found no significant difference in CNV load or number of placental-expressed or imprinted genes in CNVs between SGA and controls, however, a rare and likely clinically-relevant germline CNV was identified in 5.7% of SGA cases. These CNVs involved candidate genes INHBB, HSD11B2, CTCF, and CSMD3. CONCLUSIONS: We conclude that placental genomic imbalances at the cytogenetic and submicroscopic level may underlie up to ~ 18% of SGA cases in our population. This work contributes to the understanding of the underlying causes of placental insufficiency and FGR, which is important for counselling and prediction of long term outcomes for affected cases.


Asunto(s)
Variaciones en el Número de Copia de ADN , Retardo del Crecimiento Fetal/genética , Inestabilidad de Microsatélites , Placenta/química , Aneuploidia , Estudios de Casos y Controles , Análisis Citogenético/métodos , Femenino , Impresión Genómica , Técnicas de Genotipaje , Humanos , Recién Nacido , Recién Nacido Pequeño para la Edad Gestacional , Masculino , Mosaicismo , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Embarazo
19.
Front Genet ; 11: 957, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33110418

RESUMEN

Recent genome-wide studies of rare genetic variants have begun to implicate novel mechanisms for tetralogy of Fallot (TOF), a severe congenital heart defect (CHD). To provide statistical support for case-only data without parental genomes, we re-analyzed genome sequences of 231 individuals with TOF (n = 175) or related CHD. We adapted a burden test originally developed for de novo variants to assess ultra-rare variant burden in individual genes, and in gene-sets corresponding to functional pathways and mouse phenotypes, accounting for highly correlated gene-sets and for multiple testing. For truncating variants, the gene burden test confirmed significant burden in FLT4 (Bonferroni corrected p-value < 0.01). For missense variants, burden in NOTCH1 achieved genome-wide significance only when restricted to constrained genes (i.e., under negative selection, Bonferroni corrected p-value = 0.004), and showed enrichment for variants affecting the extracellular domain, especially those disrupting cysteine residues forming disulfide bonds (OR = 39.8 vs. gnomAD). Individuals with NOTCH1 ultra-rare missense variants, all with TOF, were enriched for positive family history of CHD. Other genes not previously implicated in CHD had more modest statistical support in gene burden tests. Gene-set burden tests for truncating variants identified a cluster of pathways corresponding to VEGF signaling (FDR = 0%), and of mouse phenotypes corresponding to abnormal vasculature (FDR = 0.8%); these suggested additional candidate genes not previously identified (e.g., WNT5A and ZFAND5). Results for the most promising genes were driven by the TOF subset of the cohort. The findings support the importance of ultra-rare variants disrupting genes involved in VEGF and NOTCH signaling in the genetic architecture of TOF, accounting for 11-14% of individuals in the TOF cohort. These proof-of-principle data indicate that this statistical methodology could assist in analyzing case-only sequencing data in which ultra-rare variants, whether de novo or inherited, contribute to the genetic etiopathogenesis of a complex disorder.

20.
JAMA Netw Open ; 3(9): e2018109, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32960281

RESUMEN

Importance: Children with medical complexity (CMC) represent a growing population in the pediatric health care system, with high resource use and associated health care costs. A genetic diagnosis can inform prognosis, anticipatory care, management, and reproductive planning. Conventional genetic testing strategies for CMC are often costly, time consuming, and ultimately unsuccessful. Objective: To evaluate the analytical and clinical validity of genome sequencing as a comprehensive diagnostic genetic test for CMC. Design, Setting, and Participants: In this cohort study of the prospective use of genome sequencing and comparison with standard-of-care genetic testing, CMC were recruited from May 1, 2017, to November 30, 2018, from a structured complex care program based at a tertiary care pediatric hospital in Toronto, Canada. Recruited CMC had at least 1 chronic condition, technology dependence (child is dependent at least part of each day on mechanical ventilators, and/or child requires prolonged intravenous administration of nutritional substances or drugs, and/or child is expected to have prolonged dependence on other device-based support), multiple subspecialist involvement, and substantial health care use. Review of the care plans for 545 CMC identified 143 suspected of having an undiagnosed genetic condition. Fifty-four families met inclusion criteria and were interested in participating, and 49 completed the study. Probands, similarly affected siblings, and biological parents were eligible for genome sequencing. Exposures: Genome sequencing was performed using blood-derived DNA from probands and family members using established methods and a bioinformatics pipeline for clinical genome annotation. Main Outcomes and Measures: The primary study outcome was the diagnostic yield of genome sequencing (proportion of CMC for whom the test result yielded a new diagnosis). Results: Genome sequencing was performed for 138 individuals from 49 families of CMC (29 male and 20 female probands; mean [SD] age, 7.0 [4.5] years). Genome sequencing detected all genomic variation previously identified by conventional genetic testing. A total of 15 probands (30.6%; 95% CI 19.5%-44.6%) received a new primary molecular genetic diagnosis after genome sequencing. Three individuals had novel diseases and an additional 9 had either ultrarare genetic conditions or rare genetic conditions with atypical features. At least 11 families received diagnostic information that had clinical management implications beyond genetic and reproductive counseling. Conclusions and Relevance: This study suggests that genome sequencing has high analytical and clinical validity and can result in new diagnoses in CMC even in the setting of extensive prior investigations. This clinical population may be enriched for ultrarare and novel genetic disorders. Genome sequencing is a potentially first-tier genetic test for CMC.


Asunto(s)
Pruebas Genéticas/estadística & datos numéricos , Trastornos Somatomorfos/diagnóstico , Secuenciación Completa del Genoma/estadística & datos numéricos , Canadá , Niño , Preescolar , Femenino , Humanos , Masculino , Valor Predictivo de las Pruebas , Estudios Prospectivos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...