Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36901697

RESUMEN

Malignant mesothelioma (MESO) consists of epithelioid, biphasic, and sarcomatoid subtypes with different epithelial-mesenchymal transition (EMT) phenotypes. We previously identified a panel of four MESO EMT genes correlating with an immunosuppressive tumor microenvironment and poor survival. In this study, we investigated the correlation between these MESO EMT genes, the immune profile, and the genomic and epigenomic alterations to identify potential therapeutic targets to prevent or reverse the EMT process. Using multiomic analysis, we observed that the MESO EMT genes were positively correlated with hypermethylation of epigenetic genes and loss of CDKN2A/B expression. MESO EMT genes such as COL5A2, ITGAV, SERPINH1, CALD1, SPARC, and ACTA2 were associated with upregulation of TGF-ß signaling, hedgehog signaling, and IL-2-STAT5 signaling and downregulation of the IFN-α and IFN-γ response. Immune checkpoints such as CTLA4, CD274 (PD-L1), PDCD1LG2 (PD-L2), PDCD1 (PD-1), and TIGIT were upregulated, while LAG3, LGALS9, and VTCN1 were downregulated with the expression of MESO EMT genes. CD160, KIR2DL1, and KIR2DL3 were also broadly downregulated with the expression of MESO EMT genes. In conclusion, we observed that the expression of a panel of MESO EMT genes was associated with hypermethylation of epigenetic genes and loss of expression of CDKN2A and CDKN2B. Expression of MESO EMT genes was associated with downregulation of the type I and type II IFN response, loss of cytotoxicity and NK cell activity, and upregulation of specific immune checkpoints, as well as upregulation of the TGF-ß1/TGFBR1 pathway.


Asunto(s)
Mesotelioma Maligno , Mesotelioma , Humanos , Transición Epitelial-Mesenquimal/genética , Proteínas Hedgehog , Mesotelioma/patología , Pronóstico , Microambiente Tumoral , Interferones
2.
Proc Natl Acad Sci U S A ; 120(9): e2210836120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36821580

RESUMEN

Defining the ontogeny of tumor-associated macrophages (TAM) is important to develop therapeutic targets for mesothelioma. We identified two distinct macrophage populations in mouse peritoneal and pleural cavities, the monocyte-derived, small peritoneal/pleural macrophages (SPM), and the tissue-resident large peritoneal/pleural macrophages (LPM). SPM rapidly increased in tumor microenvironment after tumor challenge and contributed to the vast majority of M2-like TAM. The selective depletion of M2-like TAM by conditional deletion of the Dicer1 gene in myeloid cells (D-/-) promoted tumor rejection. Sorted SPM M2-like TAM initiated tumorigenesis in vivo and in vitro, confirming their capacity to support tumor development. The transcriptomic and single-cell RNA sequencing analysis demonstrated that both SPM and LPM contributed to the tumor microenvironment by promoting the IL-2-STAT5 signaling pathway, inflammation, and epithelial-mesenchymal transition. However, while SPM preferentially activated the KRAS and TNF-α/NFkB signaling pathways, LPM activated the IFN-γ response. The importance of LPM in the immune response was confirmed by depleting LPM with intrapleural clodronate liposomes, which abrogated the antitumoral memory immunity. SPM gene signature could be identified in pleural effusion and tumor from patients with untreated mesothelioma. Five genes, TREM2, STAB1, LAIR1, GPNMB, and MARCO, could potentially be specific therapeutic targets. Accordingly, Trem2 gene deletion led to reduced SPM M2-like TAM with compensatory increase in LPM and slower tumor growth. Overall, these experiments demonstrate that SPM M2-like TAM play a key role in mesothelioma development, while LPM more specifically contribute to the immune response. Therefore, selective targeting of monocyte-derived TAM may enhance antitumor immunity through compensatory expansion of tissue-resident TAM.


Asunto(s)
Mesotelioma Maligno , Mesotelioma , Animales , Ratones , Mesotelioma Maligno/metabolismo , Mesotelioma Maligno/patología , Macrófagos Asociados a Tumores/patología , Macrófagos/metabolismo , Mesotelioma/metabolismo , Monocitos/patología , Microambiente Tumoral , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo
3.
Sci Rep ; 12(1): 1007, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-35046456

RESUMEN

Malignant mesothelioma (MESO) is a highly aggressive cancer with poor prognosis. Epithelial-mesenchymal transition (EMT) is a critical process in malignancies involved in tumor angiogenesis, progression, invasion and metastasis, immunosuppressive microenvironment and therapy resistance. However, there is a lack of specific biomarkers to identify EMT in MESO. Biphasic MESO with dual phenotypes could be an optimal model to study EMT process. Using a powerful EMTome to investigate EMT gene signature, we identified a panel of EMT genes COL5A2, ITGAV, SPARC and ACTA2 in MESO. In combination with TCGA database, Timer2.0 and other resources, we observed that overexpression of these emerging genes is positively correlated with immunosuppressive infiltration, and an unfavorable factor to patient survival in MESO. The expression of these genes was confirmed in our patients and human cell lines. Our findings suggest that these genes may be novel targets for therapeutics and prognosis in MESO and other types of cancers.


Asunto(s)
Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Mesotelioma Maligno/genética , Animales , Biomarcadores de Tumor/genética , Línea Celular Tumoral , Humanos , Mesotelioma Maligno/patología , Ratones , Trasplante de Neoplasias , Análisis de Secuencia de ARN , Transcriptoma , Microambiente Tumoral/genética
4.
J Clin Med ; 10(21)2021 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-34768716

RESUMEN

BACKGROUND: Malignant pleural mesothelioma (MESO) has a poor prognosis despite aggressive treatment with surgery, radiation and chemotherapy, and novel therapeutic approaches are needed. IRF3 is a downstream molecule of the cGAS/STING signaling pathway, but its roles have not been investigated in MESO. METHODS: Various murine mesothelioma cell lines were inoculated into wild type (WT) and IRF3 knockout (IRF3KO) mice to compare tumor growth. AE17-bearing mice were treated with local radiotherapy (LRT) to evaluate the effect on tumor growth, and immune cell infiltration was analyzed by flow cytometry 20 days after tumor inoculation. TCGA data were used to examine the relationship between mRNA expression of IRF3 and genes of the cGAS/STING signaling cascade on prognosis in MESO. Correlations between gene expression of IRF3, cGAS/STING signaling pathway, and immune checkpoints were analyzed in TCGA MESO and our scRNA-Seq data from MESO patients. RESULTS: In mouse mesothelioma models, AK7, RN5 and ZiP3 were completely rejected in IRF3KO mice 20 days after the tumor challenge. AE17tumor volume was slightly larger than WT mice around day 10 before shrinking and becoming significantly smaller than WT mice on day 20. LRT accelerated tumor shrinkage of AE17 tumors in IRF3KO mice. Compared with WT mice, the number of macrophages infiltrating the tumor of IRF3KO mice was significantly reduced, and CD4+ T cells and CD8+IFNγ+ T cells were significantly increased. TCGA data showed that IRF3 expression was an unfavorable prognostic factor in MESO patients. IRF3 expression, the cGAS/STING signaling pathway, and immune checkpoints were positively correlated. CONCLUSION: IRF3 could play a critical role in the tumor immune microenvironment of MESO.

5.
Clin Cancer Res ; 23(18): 5502-5513, 2017 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-28606922

RESUMEN

Purpose: How best to sequence and integrate immunotherapy into standard of care is currently unknown. Clinical protocols with accelerated nonablative hypofractionated radiation followed by surgery could provide an opportunity to implement immune checkpoint blockade.Experimental Design: We therefore assessed the impact of nonablative hypofractionated radiation on the immune system in combination with surgery in a mouse mesothelioma model. Blunt surgery (R1 resection) was used to analyze the short-term effect, and radical surgery (R0 resection) was used to analyze the long-term effect of this radiation protocol before surgery.Results: Nonablative hypofractionated radiation led to a specific immune activation against the tumor associated with significant upregulation of CD8+ T cells, limiting the negative effect of an incomplete resection. The same radiation protocol performed 7 days before radical surgery led to a long-term antitumor immune protection that was primarily driven by CD4+ T cells. Radical surgery alone or with a short course of nonablative radiation completed 24 hours before radical surgery did not provide this vaccination effect. Combining this radiation protocol with CTLA-4 blockade provided better results than radiation alone. The effect of PD-1 or PD-L1 blockade with this radiation protocol was less effective than the combination with CTLA-4 blockade.Conclusions: A specific activation of the immune system against the tumor contributes to the benefit of accelerated, hypofractionated radiation before surgery. Nonablative hypofractionated radiation combined with surgery provides an opportunity to introduce immune checkpoint blockades in the clinical setting. Clin Cancer Res; 23(18); 5502-13. ©2017 AACR.


Asunto(s)
Inmunoterapia , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Mesotelioma/inmunología , Mesotelioma/patología , Ligando 4-1BB/metabolismo , Animales , Antineoplásicos Hormonales/farmacología , Antígeno CTLA-4/antagonistas & inhibidores , Línea Celular Tumoral , Terapia Combinada , Modelos Animales de Enfermedad , Sinergismo Farmacológico , Humanos , Inmunización , Memoria Inmunológica , Inmunoterapia/métodos , Neoplasias Pulmonares/terapia , Recuento de Linfocitos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Mesotelioma/terapia , Mesotelioma Maligno , Ratones , Receptor de Muerte Celular Programada 1/metabolismo , Hipofraccionamiento de la Dosis de Radiación , Radioterapia , Subgrupos de Linfocitos T/efectos de los fármacos , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Carga Tumoral/efectos de los fármacos , Carga Tumoral/inmunología , Carga Tumoral/efectos de la radiación , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Metabolomics ; 10(6): 1169-1175, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25374487

RESUMEN

Although multiple, complex molecular studies have been done for understanding the development and progression of pulmonary hypertension (PAH), little is known about the metabolic heterogeneity of PAH. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we found bile acid metabolites, which are normally product derivatives of the liver and gallbladder, were highly increased in the PAH lung. Microarray showed that the gene encoding cytochrome P450 7B1 (CYP7B1), an isozyme for bile acid synthesis, was highly expressed in the PAH lung compared with the control. CYP7B1 protein was found to be primarily localized on pulmonary vascular endothelial cells suggesting de novo bile acid synthesis may be involved in the development of PAH. Here, by profiling the metabolomic heterogeneity of the PAH lung, we reveal a newly discovered pathogenesis mechanism of PAH.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...