Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 10(1): 421, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393372

RESUMEN

Land subsidence in cities along the northern coastline of Java has been at a worrying level. Monitoring efforts using geodetic data reveal that Jakarta, Pekalongan, Semarang, and Demak subside at least ~9x faster than the present-day rate of global sea level rise, which affects the cities' future urban viability. In this study, we publish a time series of the precise 3D displacements observed by twenty continuous Global Navigation Satellite System (GNSS) stations between 2010 and 2021. These are the first open-to-the-public and rigorously processed GNSS datasets that are useful for accurately quantifying land subsidence in the densely populated sinking cities in Java. The data also provides a way to tie other geodetic observations, such as Interferometric Synthetic Aperture Radar (InSAR), to a global reference frame in an attempt to build worldwide observations of coastal land subsidence.

2.
RSC Adv ; 12(28): 17740-17746, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35765345

RESUMEN

The usage of aqueous lubricants in eco-friendly bio-medical friction systems has attracted significant attention. Several bottle-brush polymers with generally ionic functional groups have been developed based on the structure of biological lubricant lubricin. However, hydrophilic nonionic brush polymers have attracted less attention, especially in terms of wear properties. We developed bottle-brush polymers (BP) using hydrophilic 2-hydroxyethyl methacrylate (HEMA), a highly biocompatible yet nonionic molecule. The lubrication properties of polymer films were analyzed in an aqueous state using a ball-on-disk, which revealed that BPHEMA showed a lower aqueous friction coefficient than linear poly(HEMA), even lower than hyaluronic acid (HA) and polyvinyl alcohol (PVA), which are widely used as lubricating polymers. Significantly, we discovered that the combination of HA, PVA, and BPHEMA is demonstrated to be essential in influencing the surface wear properties; the ratio of 1 : 2 (HA : BPHEMA) had the maximum wear resistance, despite a slight increase in the aqueous friction coefficient.

3.
Sci Data ; 7(1): 100, 2020 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-32214103

RESUMEN

During the aftermath of Typhoon Hagibis, we made flood and damage proxy maps, rapidly derived from synthetic aperture radar (SAR) data using change detection approaches. The maps have large spatial coverage over the Tokyo, Fukushima, Ibaraki, Iwate, and Nagano prefectures of Japan. The maps are also largely in agreement with various validation sources including aerial imagery, optical imagery and news sources. Apart from visual maps, we provide flood and damage extents in various formats compatible with geographic information system (GIS) applications. The data may potentially be used for applications such as typhoon risk modelling, investigating spatial correlations of typhoon impacts, and comparing alternative flood or damage mapping techniques.

4.
BMB Rep ; 53(4): 223-228, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31964468

RESUMEN

Dysregulation of histone deacetylase 6 (HDAC6) can lead to the pathologic states and result in the development of various diseases including cancers and inflammatory diseases. The objective of this study was to elucidate the regulatory role of microRNA-22 (miR-22) in HDAC6-mediated expression of proinflammatory cytokines in lipopolysaccharide (LPS)-stimulated macrophages. LPS stimulation induced HDAC6 expression, but suppressed miR-22 expression in macrophages, suggesting possible correlation between HDAC6 and miR-22. Luciferase reporter assays revealed that 3'UTR of HDAC6 was a bona fide target site of miR-22. Transfection of miR-22 mimic significantly inhibited LPS-induced HDAC6 expression, while miR-22 inhibitor further increased LPS-induced HDAC6 expression. LPS-induced activation of NF-κB and AP-1 was inhibited by miR-22 mimic, but further increased by miR-22 inhibitor. LPS-induced expression of pro-inflammatory cytokines such as TNF-α, IL-1ß, and IL-6 was inhibited by miR-22 mimic, but further increased by miR-22 inhibitor. Taken together, these data provide evidence that miR-22 can downregulate LPS-induced expression of proinflammatory cytokines via suppression of NF-κB and AP-1 axis by targeting HDAC6 in macrophages. [BMB Reports 2020; 53(4): 223-228].


Asunto(s)
Histona Desacetilasa 6/genética , Histona Desacetilasa 6/metabolismo , MicroARNs/genética , Animales , Citocinas/metabolismo , Inflamación/genética , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Macrófagos/fisiología , Ratones , MicroARNs/metabolismo , FN-kappa B/metabolismo , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos , Factor de Necrosis Tumoral alfa/metabolismo
5.
Science ; 366(6463): 346-351, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31624209

RESUMEN

A nearly 20-year hiatus in major seismic activity in southern California ended on 4 July 2019 with a sequence of intersecting earthquakes near the city of Ridgecrest, California. This sequence included a foreshock with a moment magnitude (M w) of 6.4 followed by a M w 7.1 mainshock nearly 34 hours later. Geodetic, seismic, and seismicity data provided an integrative view of this sequence, which ruptured an unmapped multiscale network of interlaced orthogonal faults. This complex fault geometry persists over the entire seismogenic depth range. The rupture of the mainshock terminated only a few kilometers from the major regional Garlock fault, triggering shallow creep and a substantial earthquake swarm. The repeated occurrence of multifault ruptures, as revealed by modern instrumentation and analysis techniques, poses a formidable challenge in quantifying regional seismic hazards.

6.
Sci Rep ; 7(1): 5485, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28710455

RESUMEN

We reconstructed the three-dimensional (3D) surface displacement field of the 24 August 2014 M6.0 South Napa earthquake using SAR data from the Italian Space Agency's COSMO-SkyMed and the European Space Agency's Sentinel-1A satellites. Along-track and cross-track displacements produced with conventional SAR interferometry (InSAR) and multiple-aperture SAR interferometry (MAI) techniques were integrated to retrieve the east, north, and up components of surface deformation. The resulting 3D displacement maps clearly delineated the right-lateral shear motion of the fault rupture with a maximum surface displacement of approximately 45 cm along the fault's strike, showing the east and north components of the trace particularly clearly. These maps also suggested a better-constrained model for the South Napa earthquake. We determined a strike of approximately 338° and dip of 85° by applying the Okada dislocation model considering a single patch with a homogeneous slip motion. Using the distributed slip model obtained by a linear solution, we estimated that a peak slip of approximately 1.7 m occurred around 4 km depth from the surface. 3D modelling using the retrieved 3D maps helps clarify the fault's nature and thus characterize its behaviour.

7.
J Colloid Interface Sci ; 456: 76-84, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26093236

RESUMEN

A micro-patterned silicon surface, consisting of depressions with walls having a tilt angle of 30°, was created by photolithography followed by etching. The friction forces in single asperity contact acting between such a surface and an AFM tip was measured in air. This allowed elucidation of the validity of some common friction rules for this particular situation where a small tip traces a surface having roughness features that are significantly larger than the tip itself. The rules that was compared with our data were Amontons' first rule of friction stating that the friction force should be proportional to the load; Amontons' third rule stating that the friction force should be independent of sliding speed, and Euler's rule providing a relation between slope angle and friction coefficient. We found that both nanoscale surface heterogeneities and the µm-sized depressions affect friction forces, and considerable reproducible variations were found along a particular scan line. Nevertheless Amontons' first rule described average friction forces well. Amontons' third rule and Euler's rule were found to be less applicable to our system.

8.
Sensors (Basel) ; 15(3): 5649-65, 2015 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-25760052

RESUMEN

As the aerospace industry grows, images obtained from Earth observation satellites have been successfully used in various fields. Specifically, the demand for a high-resolution (HR) optical images is gradually increasing, and hence the generation of a high-quality mosaic image is being magnified as an interesting issue. In this paper, we have proposed an efficient mosaic algorithm for HR optical images that are significantly different due to seasonal change. The algorithm includes main steps such as: (1) seamline extraction from gradient magnitude and seam images; (2) histogram matching; and (3) image feathering. Eleven Kompsat-2 images characterized by seasonal variations are used for the performance validation of the proposed method. The results of the performance test show that the proposed method effectively mosaics Kompsat-2 adjacent images including severe seasonal changes. Moreover, the results reveal that the proposed method is applicable to HR optic images such as GeoEye, IKONOS, QuickBird, RapidEye, SPOT, WorldView, etc.

9.
ACS Appl Mater Interfaces ; 3(9): 3432-9, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21830774

RESUMEN

Friction between nonadhering sliding surfaces are normally described by Amontons' law, which states that there exists a linear relationship between the friction force and the normal applied load and that the friction force is independent of the macroscopic contact area between the surfaces and the sliding velocity. In this study we have measured friction as a function of applied load between a spherical silica particle and a microstructured silicon surface consisting of arrays of vertical microneedles, and we have challenged Amontons' law by changing the size of the silica particle and the sliding velocity. First, when looking at the friction as a function of time for a given applied load, the friction force was observed to oscillate with a period related to the spacing between the microneedles when using a small silica particle, whereas the friction force exhibited a more random variation when a larger silica particle was used. The oscillation in the friction force is a direct evidence for bending and release of individual microneedles and the observation illustrates that the energy dissipating mechanism becomes hidden in the friction data when the dimensions of the sliding body becomes much larger than the length scale of the surface features causing the friction. Second, when looking at the average friction force as a function of applied load we find, in accordance with Amontons' law, a linear relationship between the friction force and the applied load and the friction force is independent of both the size of the sliding silica particle and of the sliding velocity. One exception from this, however, was observed when sliding a small silica particle at low velocity, where a deviation from Amontons' law was noticed. The deviation from Amontons' law is suggested to be attributed to a change in the energy dissipating mechanism giving rise to the friction force. In light of that it is suggested that Amontons' law only is valid as long as the main energy dissipating mechanism does not change with the applied load. To get a better understanding of the general validity of Amontons' law, our results were evaluated against different microscopic models.


Asunto(s)
Silicio/química , Fricción , Modelos Moleculares , Propiedades de Superficie , Termodinámica
10.
ACS Appl Mater Interfaces ; 1(11): 2443-52, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20356113

RESUMEN

Structured silicon surfaces, possessing hierarchical porous characteristics consisting of micrometer-sized cavities superimposed upon a network of nanometer-sized pillars or wires, have been fabricated by a plasma-etching process. These surfaces have superoleophobic properties, after being coated with fluorinated organic trichlorosilanes, on intrinsically oleophilic surfaces. By comparison with flat silicon surfaces, which are oleophilic, it has been demonstrated that a combination of low surface energy and the structured features of the plasma-etched surface is essential to prevent oil from penetrating the surface cavities and thus induce the observed macroscopic superoleophobic phenomena with very low contact-angle hysteresis and low roll-off angles. The structured silicon surfaces were coated with cellulose nanocrystals using the polyelectrolyte multilayer technique. The cellulose surfaces prepared in this way were then coated with a monolayer of fluorinated trichlorosilanes. These porous cellulose films displayed highly nonwetting properties against a number of liquids with low surface tension, including alkanes such as hexadecane and decane. The wettability and chemical composition of the cellulose/silicon surfaces were characterized with contact-angle goniometry and X-ray photoelectron spectroscopy, respectively. The nano/microtexture features of the cellulose/silicon surfaces were also studied with field-emission scanning electron microscopy. The highly oleophobic structured cellulose surfaces are very interesting model surfaces for the development of biomimetic self-cleaning surfaces in a vast array of products, including green constructions, packaging materials, protection against environmental fouling, sports, and outdoor clothing, and microfluidic systems.

11.
Science ; 316(5827): 1026-30, 2007 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-17510364

RESUMEN

Mauna Loa volcano, Hawaii, deforms by a combination of shallow dike intrusions in the rift zones and earthquakes along the base of the volcano, but it is not known how the spreading is accommodated in the lower part of the volcanic edifice. We present evidence from interferometric synthetic aperture radar data for secular inflation of a dike-like magma body at intermediate depth in the southwest rift zone during 2002 to 2005. Magma accumulation occurred in a section of the rift zone that was unclamped by previous dikes and earthquakes, suggesting that stress transfer plays an important role in controlling subsurface magma accumulation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...