Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; : e2310782, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38431927

RESUMEN

Freestanding oxide membranes provide a promising path for integrating devices on silicon and flexible platforms. To ensure optimal device performance, these membranes must be of high crystal quality, stoichiometric, and their morphology free from cracks and wrinkles. Often, layers transferred on substrates show wrinkles and cracks due to a lattice relaxation from an epitaxial mismatch. Doping the sacrificial layer of Sr3 Al2 O6 (SAO) with Ca or Ba offers a promising solution to overcome these challenges, yet its effects remain critically underexplored. A systematic study of doping Ca into SAO is presented, optimizing the pulsed laser deposition (PLD) conditions, and adjusting the supporting polymer type and thickness, demonstrating that strain engineering can effectively eliminate these imperfections. Using SrTiO3 as a case study, it is found that Ca1.5 Sr1.5 Al2 O6 offers a near-perfect match and a defect-free freestanding membrane. This approach, using the water-soluble Bax /Cax Sr3-x Al2 O6 family, paves the way for producing high-quality, large freestanding membranes for functional oxide devices.

2.
Mater Adv ; 4(24): 6638-6644, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38088950

RESUMEN

Ionic conductivity is pivotal for solid-state battery performance. While the garnet oxide electrolyte Li7La3Zr2O12 (LLZO) boasts high ionic conductivity due to its distinct crystal structure and lithium-ion mobility, lithium loss during fabrication hampers its potential. In this study, we introduce a method that merges synthesis optimization with a post-lithiation process, enhancing LLZO's ionic conductivity. This approach compensates lithium loss with a gas-phase diffusion process, which stabilizes the cubic LLZO phase and amplifies its ionic conductivity by more than three orders of magnitude compared to electrolytes without post-lithiation. Through our comprehensive experimental procedure, we have conclusively determined that the film deposited at 700 °C and subsequently annealed at 700 °C with LiOH exhibits the highest conductivity, with a notable value of 1.11 × 10-2 S cm-1 at 200 °C. This is a significant boost compared to the as-deposited film (3.54 × 10-6 S cm-1 at 200 °C). Our findings present an additional approach to boosting lithium ion diffusion. The approach employed in this work has the potential to be applicable to films produced through other deposition methods, as it addresses the prevalent issue of lithium loss, a significant barrier to the utilization of lithium-rich thin films.

3.
J Vis Exp ; (196)2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37358308

RESUMEN

Electrical, optical, and magnetic properties of oxide materials can often be controlled by varying the oxygen content. Here we outline two approaches for varying the oxygen content and provide concrete examples for tuning the electrical properties of SrTiO3-based heterostructures. In the first approach, the oxygen content is controlled by varying the deposition parameters during a pulsed laser deposition. In the second approach, the oxygen content is tuned by subjecting the samples to annealing in oxygen at elevated temperatures after the film growth. The approaches can be used for a wide range of oxides and nonoxide materials where the properties are sensitive to a change in the oxidation state. The approaches differ significantly from electrostatic gating, which is often used to change the electronic properties of confined electronic systems such as those observed in SrTiO3-based heterostructures. By controlling the oxygen vacancy concentration, we are able to control the carrier density over many orders of magnitude, even in nonconfined electronic systems. Moreover, properties can be controlled, which are not sensitive to the density of itinerant electrons.


Asunto(s)
Electricidad , Óxidos , Electrónica , Oxígeno
4.
Adv Mater ; 34(38): e2203187, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35901262

RESUMEN

The integration of dissimilar materials in heterostructures has long been a cornerstone of modern materials science-seminal examples are 2D materials and van der Waals heterostructures. Recently, new methods have been developed that enable the realization of ultrathin freestanding oxide films approaching the 2D limit. Oxides offer new degrees of freedom, due to the strong electronic interactions, especially the 3d orbital electrons, which give rise to rich exotic phases. Inspired by this progress, a new platform for assembling freestanding oxide thin films with different materials and orientations into artificial stacks with heterointerfaces is developed. It is shown that the oxide stacks can be tailored by controlling the stacking sequences, as well as the twist angle between the constituent layers with atomically sharp interfaces, leading to distinct moiré patterns in the transmission electron microscopy images of the full stacks. Stacking and twisting is recognized as a key degree of structural freedom in 2D materials but, until now, has never been realized for oxide materials. This approach opens unexplored avenues for fabricating artificial 3D oxide stacking heterostructures with freestanding membranes across a broad range of complex oxide crystal structures with functionalities not available in conventional 2D materials.

5.
Nat Commun ; 11(1): 4898, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32994411

RESUMEN

The emergence of a domain wall property that is forbidden by symmetry in bulk can offer unforeseen opportunities for nanoscale low-dimensional functionalities in ferroic materials. Here, we report that the piezoelectric response is greatly enhanced in the ferroelastic domain walls of centrosymmetric tungsten trioxide thin films due to a large strain gradient of 106 m-1, which exists over a rather wide width (~20 nm) of the wall. The interrelationship between the strain gradient, electric polarity, and the electromechanical property is scrutinized by detecting of the lattice distortion using atomic scale strain analysis, and also by detecting the depolarized electric field using differential phase contrast technique. We further demonstrate that the domain walls can be manipulated and aligned in specific directions deterministically using a scanning tip, which produces a surficial strain gradient. Our findings provide the comprehensive observation of a flexopiezoelectric phenomenon that is artificially controlled by externally induced strain gradients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...