Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chem ; 84(10): 4544-51, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22524203

RESUMEN

Collision-induced dissociation Fourier Transform ion cyclotron resonance mass spectrometry (CID-FTICR MS) was developed to determine structural building blocks in heavy petroleum systems. Model compounds with both single core and multicore configurations were synthesized to study the fragmentation pattern and response factors in the CID reactions. Dealkylation is found to be the most prevalent reaction pathway in the CID. Single core molecules exhibit primarily molecular weight reduction with no change in the total unsaturation of the molecule (or Z-number as in chemical formula C(c)H(2c+Z)N(n)S(s)O(o)VNi). On the other hand, molecules containing more than one aromatic core will decompose into the constituting single cores and consequently exhibit both molecular weight reduction and change in Z-numbers. Biaryl linkage, C(1) linkage, and aromatic sulfide linkage cannot be broken down by CID with lab collision energy up to 50 eV while C(2)+ alkyl linkages can be easily broken. Naphthenic ring-openings were observed in CID, leading to formation of olefinic structures. Heavy petroleum systems, such as vacuum resid (VR) fractions, were characterized by the CID technology. Both single-core and multicore structures were found in VR. The latter is more prevalent in higher aromatic ring classes.

2.
Chem Commun (Camb) ; (35): 4186-8, 2008 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-18802524

RESUMEN

In situ polymerization by certain transition metal catalysts supported on and activated by acid-treated montmorillonite produces well-dispersed clay-polyolefin nanocomposites, without requiring either organic surfactants to be present in the clay phase or modification of the polyolefin structure.

4.
J Am Chem Soc ; 126(45): 14804-15, 2004 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-15535706

RESUMEN

Protonolysis of the dimethylrhenium(III) compound Cp(PMe(3))(2)Re(CH(3))(2) (3) led to formation of the highly reactive hydridorhenium methylidene compound [Cp(PMe(3))(2)Re(CH(2))(H)][OTf] (4), which was characterized spectroscopically at low temperature. Although 4 decomposed above -30 degrees C, reactivity studies performed at low temperature indicated it was in equilibrium with the coordinatively unsaturated methylrhenium complex [Cp(PMe(3))(2)Re(CH(3))][OTf] (2). Methylidene complex 4 was found to react with PMe(3) to afford [Cp(PMe(3))(3)Re(CH(3))][OTf] (6) and with chloride anion to give Cp(PMe(3))(2)Re(Me)Cl (7). When BAr(f) anion was added to 4, the thermally stable methylrhenium methylidene complex [Cp(PMe(3))(2)Re(CH(2))(CH(3))][BAr(f)] (8) was isolated upon warming to room temperature. The mechanisms of formation of both 4 and 8 are discussed in detail, including DFT calculations. The novel carbonyl ligated complex Cp(CO)(2)Re(CH(3))OTf (12) was prepared, isolated, and found to not undergo migration reactions to form methylidene complexes.

5.
J Am Chem Soc ; 126(40): 13033-43, 2004 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-15469302

RESUMEN

A mechanistic study of the stoichiometric and catalytic H/D exchange reactions involving cationic iridium complexes is presented. Strong evidence suggests that both stoichiometric and catalytic reactions proceed via a monohydrido-iridium species. Stoichiometric deuterium incorporation reactions introduce multiple deuterium atoms into the organic products when aryliridium compounds CpPMe(3)Ir(C(6)H(4)X)(OTf) (X = H, o-CH(3), m-CH(3), p-CH(3)) react with D(2). Multiple deuteration occurs at the unhindered positions (para and meta) of toluene, when X = CH(3). The multiple-deuteration pathway is suppressed in the presence of an excess of the coordinating ligand, CH(3)CN. The compound CpPMe(3)IrH(OTf) (1-OTf) is observed in low-temperature, stoichiometric experiments to support a monohydrido-iridium intermediate that is responsible for catalyzing multiple deuteration in the stoichiometric system. When paired with acetone-d(6)(), [CpPMe(3)IrH(3)][OTf] (4) catalytically deuterates a wide range of substrates with a variety of functional groups. Catalyst 4 decomposes to [CpPMe(3)Ir(eta(3)-CH(2)C(OH)CH(2))][OTf] (19) in acetone and to [CpPMe(3)IrH(CO)][OTf] (1-CO) in CH(3)OH. The catalytic H/D exchange reaction is not catalyzed by simple H(+) transfer, but instead proceeds by a reversible C-H bond activation mechanism.


Asunto(s)
Deuterio/química , Hidrógeno/química , Iridio/química , Marcaje Isotópico/métodos , Alcoholes/química , Aminas/química , Ácidos Carboxílicos/química , Compuestos Organometálicos/química
6.
Org Lett ; 6(1): 11-3, 2004 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-14703338

RESUMEN

[reaction: see text] Ir(III) complex [Cp(PMe(3))IrMe(CH(2)Cl(2))][BAr(f)] (1) was used to introduce deuterium stoichiometrically into substituted naphthalene/benzene templates and several "drug-like" entities. The exchange process is tolerant of a wide array of functional groups. Labeling of warfarin using subatmospheric pressures of T(2) led to specific activities and total activities rivaling current functional group directed tritium labeling methods. When paired with the appropriate deuterium donor, Cp(PMe(3))Ir(H(3))OTf (4) was found to deuterate a number of organic compounds catalytically.

7.
J Am Chem Soc ; 124(7): 1400-10, 2002 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-11841308

RESUMEN

A detailed mechanistic study of arene C [bond] H activation in CH(2)Cl(2) solution by Cp(L)IrMe(X) [L = PMe(3), P(OMe)(3); X = OTf, (CH(2)Cl(2))BAr(f); (BAr(f) = B[3,5-C(6)H(3)(CF(3))(2)](4))(-)] is presented. It was determined that triflate dissociation in Cp(L)IrMe(OTf), to generate tight and/or solvent-separated ion pairs containing a cationic iridium complex, precedes C [bond] H activation. Consistent with the ion-pair hypothesis, the rate of arene activation by Cp(L)IrMe(OTf) is unaffected by added external triflate salts, but the rate is strongly dependent upon the medium. Thus the reactivity of Cp(PMe(3))IrMe(OTf) can be increased by almost 3 orders of magnitude by addition of (n-Hex)(4)NBAr(f), presumably because the added BAr(f) anion exchanges with the OTf anion in the initially formed ion pair, transiently forming a cation/borate ion pair in solution (special salt effect). In contrast, addition of (n-Hex)(4)NBAr(f) to [CpPMe(3)Ir(Me)CH(2)Cl(2)][BAr(f)] does not affect the rate of benzene activation; here there is no initial covalent/ionic pre-equilibrium that can be perturbed with added (n-Hex)(4)NBAr(f). An analysis of the reaction between Cp(PMe(3))IrMe(OTf) and various substituted arenes demonstrated that electron-donating substituents on the arene increase the rate of the C [bond] H activation reaction. The rate of C(6)H(6) activation by [Cp(PMe(3))Ir(Me)CH(2)Cl(2)][BAr(f)] is substantially faster than [Cp(P(OMe)(3))Ir(Me)CH(2)Cl(2)][BAr(f)]. Density functional theory computations suggest that this is due to a less favorable pre-equilibrium for dissociation of the dichloromethane ligand in the trimethyl phosphite complex, rather than to a large electronic effect on the C [bond] H oxidative addition transition state. Because of these combined effects, the overall rate of arene activation is increased by electron-donating substituents on both the substrate and the iridium complex.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...