Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Animals (Basel) ; 13(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37684966

RESUMEN

Research on the psychological and physiological well-being of captive animals has focused on investigating different types of social and structural enrichment. Consequently, cognitive enrichment has been understudied, despite the promising external validity, comparability, and applicability. As we aim to fill this gap, we developed an interactive, multiple-choice interface for cage-mounted touchscreen devices that rhesus monkeys (Macaca mulatta) can freely interact with, from within their home enclosure at the Cognitive Neuroscience Laboratory of the German Primate Center. The multiple-choice interface offers interchangeable activities that animals can choose and switch between. We found that all 16 captive rhesus macaques tested consistently engaged with the multiple-choice interface across 6 weekly sessions, with 11 of them exhibiting clear task preferences, and displaying proficiency in performing the selected tasks. Our approach does not require social separation or dietary restriction and is intended to increase animals' sense of competence and agency by providing them with more control over their environment. Thanks to the high level of automation, our multiple-choice interface can be easily incorporated as a standard cognitive enrichment practice across different facilities and institutes working with captive animals, particularly non-human primates. We believe that the multiple-choice interface is a sustainable, scalable, and pragmatic protocol for enhancing cognitive well-being and animal welfare in captivity.

2.
eNeuro ; 10(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36564215

RESUMEN

Electrophysiological studies with behaving nonhuman primates often require the separation of animals from their social group as well as partial movement restraint to perform well-controlled experiments. When the research goal per se does not mandate constraining the animals' movements, there are often still experimental needs imposed by tethered data acquisition. Recent technological advances meanwhile allow wireless neurophysiological recordings at high band-width in limited-size enclosures. Here, we demonstrate wireless neural recordings at single unit resolution from unrestrained rhesus macaques while they performed self-paced, structured visuomotor tasks on our custom-built, stand-alone touchscreen system [eXperimental Behavioral Instrument (XBI)] in their home environment. We were able to successfully characterize neural tuning to task parameters, such as visuo-spatial selectivity during movement planning and execution, as expected from existing findings obtained via setup-based neurophysiology recordings. We conclude that when movement restraint and/or a highly controlled, insulated environment are not necessary for scientific reasons, cage-based wireless neural recordings are a viable option. We propose an approach that allows the animals to engage in a self-paced manner with our XBI device, both for fully automatized training and cognitive testing, as well as neural data acquisition in their familiar environment, maintaining auditory and sometimes visual contact with their conspecifics.


Asunto(s)
Neurofisiología , Animales , Macaca mulatta
3.
Front Psychol ; 13: 1047292, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36605264

RESUMEN

Introduction: Cognitive flexibility is the ability of an individual to make behavioral adjustments in response to internal and/or external changes. While it has been reported in a wide variety of species, established paradigms to assess cognitive flexibility vary between humans and non-human animals, making systematic comparisons difficult to interpret. Methods: We developed a computer-based paradigm to assess cognitive flexibility in humans and non-human primates. Our paradigm (1) uses a classical reversal learning structure in combination with a set-shifting approach (4 stimuli and 3 rules) to assess flexibility at various levels; (2) it employs the use of motion as one of three possible contextual rules; (3) it comprises elements that allow a foraging-like and random interaction, i.e., instances where the animals operate the task without following a strategy, to potentially minimize frustration in favor of a more positive engagement. Results and Discussion: We show that motion can be used as a feature dimension (in addition to commonly used shape and color) to assess cognitive flexibility. Due to the way motion is processed in the primate brain, we argue that this dimension is an ideal candidate in situations where a non-binary rule set is needed and where participants might not be able to fully grasp other visual information of the stimulus (e.g., quantity in Wisconsin Card Sorting Test). All participants in our experiment flexibly shifted to and from motion-based rules as well as color- and shape-based rules, but did so with different proficiencies. Overall, we believe that with such approach it is possible to better characterize the evolution of cognitive flexibility in primates, as well as to develop more efficient tools to diagnose and treat various executive function deficits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...