Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Intervalo de año de publicación
2.
Nutr. clín. diet. hosp ; 43(1): 73-80, Mar 23, 2023. tab, ilus
Artículo en Inglés | IBECS | ID: ibc-217976

RESUMEN

The complexity of globalization, including the global food trade market, has the side effect that various raw foodstuffs are vulnerable to intentional and unintentional adulteration. However, food validation and standardization approaches are still unclear and challenging and need to be explored. Through this opinion article, the author would like to introduce a foodomics approach (Food, -Omics) to facilitate integrated food authenticity verification through biosensors. This approach is potentially suitable and offers more valuable accuracy as it combines biological analysis methods spanning genomics, transcriptomics, proteomics, and metabolomics. Meanwhile, several subdisciplines of Foodomics, such as metallomics, volatomics, and lipidomics, which are considered feasible to facilitate the verification of food authenticity, are also explored in this critical opinion. Foodomics consists of four main omics technologies, namely genomics, transcriptomics, proteomics, and metabolomics. This is an integration of promising approaches to provide standardized food matrices, thus becoming the most likely strategy to verify the authenticity of food. However, after trying to uncover this food authentication problem and provide a Foodomics approach, we felt the need for synergies in building a database capable of storing food matrices in the form of unique genes, bioactive peptides, and secondary metabolites. We hope that through this opinion article, the target database can be formed, although databases such as MEDLINE and PubChem have provided this data facility. In particular, we suggest the development of nanobiosensors that should undoubtedly be environmentally friendly and portable (making use of smartphones) and creating a cloud database capable of storing food matrices in the form of unique genes, bioactive peptides, and secondary metabolites, integrated with smartphone biosensors.(AU)


Asunto(s)
Humanos , Técnicas Biosensibles , Contaminación de Alimentos , Proteómica , Nutrigenómica , Alimentos Crudos/toxicidad , 52503
3.
Nutrients ; 15(4)2023 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-36839268

RESUMEN

This study evaluated the effects of an aqueous extract of Caulerpa racemosa (AEC) on cardiometabolic syndrome markers, and the modulation of the gut microbiome in mice administered a cholesterol- and fat-enriched diet (CFED). Four groups of mice received different treatments: normal diet, CFED, and CFED added with AEC extract at 65 and 130 mg/kg body weight (BW). The effective concentration (EC50) values of AEC for 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and lipase inhibition were lower than those of the controls in vitro. In the mice model, the administration of high-dose AEC showed improved lipid and blood glucose profiles and a reduction in endothelial dysfunction markers (PRMT-1 and ADMA). Furthermore, a correlation between specific gut microbiomes and biomarkers associated with cardiometabolic diseases was also observed. In vitro studies highlighted the antioxidant properties of AEC, while in vivo data demonstrated that AEC plays a role in the management of cardiometabolic syndrome via regulation of oxidative stress, inflammation, endothelial function (PRMT-1/DDAH/ADMA pathway), and gut microbiota.


Asunto(s)
Caulerpa , Microbioma Gastrointestinal , Síndrome Metabólico , Extractos Vegetales , Animales , Ratones , Arginina/metabolismo , Caulerpa/química , Suplementos Dietéticos , Endotelio/metabolismo , Extractos Vegetales/administración & dosificación
5.
Front Nutr ; 9: 963065, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36245543

RESUMEN

Background and aims: A combined eel and soy-based tempe (CEST) flour is rich in nutrients, especially its high amino acid content in which bioactive peptides (BPs) are expected to be found. Hence, this research aimed to identify the BPs of CEST flour and CEST supplementation's effect on improving nutritional status biomarkers by ameliorating serum protein, hemoglobin, and IGF-1 of malnourished rats. Methods: CEST flour with a ratio of eel and soy-based tempe of 1:3.5 was produced by applying the oven drying method. Amino acid sequences from six BPs were analyzed using a protein sequencer and spectrometer-electrospray ionization (MS-ESI). A total of thirty malnourished male Rattus norvegicus aged 3-4 weeks were given low-protein (LP; 4% w/w protein) diet treatment for 4 weeks. Afterward, rats were divided into 3 groups of 10 rats. Group A and B remained on a low-protein diet for 4 weeks, receiving an LP diet and getting doses of CEST of 100 and 200 mg/kg BW, respectively, via oral. Group C or control was given a Normal-protein (NP) diet (23% w/w of protein) and was allowed to feed ad libitum during the trial period without a dose of CEST. Results: Six bioactive peptides were found, with WMGPY being the most abundant, along with a DPPH radical scavenging activity of 5.0 mg/mL. The results showed that serum protein, hemoglobin, and IGF-1 of group B were significantly higher compared to groups A and C (p = 0.0021). CEST dose of 200 mg/kg BW was more effective to increase serum levels of protein (p = 0.0052), hemoglobin, and IGF-1 (p < 0.0001) compared to a 100 mg/kg BW dose. Conclusion: This indicates that the CEST flour has six bioactive peptides, which may contribute to the improvement of nutritional status biomarkers. To establish its potential impact, a human clinical study is urgently needed.

6.
Front Nutr ; 9: 1010867, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36185651

RESUMEN

Dietary modification, including functional foods, could reduce comorbidities due to obesity. An increase in serum glucose and lipids is often seen in obesity. Furthermore, obesity is also characterized by a decrease in antioxidant capacity (i.e., decrease in superoxide dismutase/SOD) and downregulation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). It has been well established that PGC-1α is important to regulate mitochondrial biogenesis. Sea grapes (Caulerpa lentillifera) are known as a traditional food in many Asia-Pacific countries. Recent evidence suggests that sea grapes have many beneficial properties as functional foods and may have potential therapeutic functions. We investigated the effect of sea grapes (C. lentillifera) on serum glucose, lipids, PGC-1α, and protein levels of SOD in the liver of Rattus norvegicus, which is induced with a high-fat and high-cholesterol diet. A total of four groups were made, each containing ten male Rattus norvegicus; group A received a standard dry pellet diet as control, group B received cholesterol- and fat-enriched diets (CFED), groups C and D received CFED and 150 and 450 mg/kg body weight (BW) of sea grape extract, respectively, for 4 weeks. Serum glucose and cholesterol were assessed using a blood auto-analyzer. Serum PGC-1α was measured using ELISA. SOD levels were calculated using the superoxide dismutase assay kit by Sigma-Aldrich with blood taken from liver tissue. In this study, sea grape extracts improved total cholesterol levels better than the CFED and normal groups. The efficacy of total cholesterol improvement was similar between the two doses of sea grape extract. Furthermore, sea grape extract increased PCG-1α levels, especially with the dose of 150 mg/kg BW. Blood glucose was also lower in the groups of sea grape extract. Interestingly, the groups treated with sea grapes extract exhibited higher levels of liver SOD compared to the normal and CFED groups. To conclude, sea grapes (C. lentillifera) have promising potential for anti-hyperglycemia and anti-hypercholesterolemia, and for reducing oxidative stress, and providing various health benefits for metabolic disorders.

7.
Curr Res Food Sci ; 5: 1251-1265, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36046779

RESUMEN

Clitoria ternatea, with an alternative name, Butterfly pea, is increasingly being explored for medical purposes and the development of a wide range of processed products. This study aimed to incorporate Butterfly pea into an innovative probiotic drink through a symbiotic culture of bacteria and yeast (SCOBY) fermentation and to evaluate the biological activity. The benefits of the drink, referred to as butterfly pea flower kombucha (KBPF) was determined in vitro and in metabolically disorder mice that receive a diet rich in cholesterol and fat (CFED). Forty white male were categorized into four groups, i.e., A = Control/Normal Diet; B = CFED alone; C = CFED + KBPF 65 mg/kg BW (Body Weight); D = CFED + KBPF 130 mg/kg BW, and then sacrificed after 6 weeks of intervention. Seventy-nine secondary metabolite compounds were successfully identified in KBPF using LC-HRMS. In vitro studies showed the potential activity of KBPF in inhibiting not only ABTS, but also lipid (lipase) and carbohydrate (α-amylase, α-glucosidase) hydrolyzing enzymes to levels similar to acarbose control at 50-250 µg/mL. In the in vivo study, the administration of KBPF (130 mg/kg BW) significantly alleviated metabolic disorders caused by high-fat diet. Specifically, lipid profile (HDL, LDL, TC, TG), blood glucose, markers of oxidative stress (SOD liver), metabolic enzymes (lipase, amylase), and markers of inflammation (PGC-1α, TNF-α, and IL-10) were in most cases restored to normal values. Additionally, the gut microbiota community analysis showed that KBPF has a positive effect (p = 0.01) on both the Bacteroidetes phylum and the Firmicutes phylum. The new KBPF drink is a promising therapeutic functional food for preventing metabolic diseases.

8.
Front Nutr ; 9: 939073, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35911110

RESUMEN

Obesity is associated with an accelerated aging process, which prevents healthy aging. Both obesity and aging were manifested in the peroxisome proliferator-activated receptor-γ coactivator α (PGC-1α) level. These studies fulfill the scientific gap in assembled pharmacological activity assay of Caulerpa racemosa done in a previous preclinical trial. Six major compounds from sea grape (C. racemosa) extract were evaluated using an in silico approach against human pancreatic lipase, a-glucosidase, and a-amylase to predict prospective anti-obesity candidates. The lipase inhibitory activity of the extract reached 90.30 ± 0.40%, 1.75% lower than orlistat. The a-amylase inhibitory assay of the extract was 84.07 ± 5.28%, while the inhibitory activity against a-glucosidase was 81.67 ± 1.54%; both were lower than acarbose. We observe the effect of C. racemosa extract as anti-obesity with anti-aging by evaluating the obesity parameters in the human body for a 4-week period. There was a significant decrease in blood glucose, total cholesterol, low-density lipoprotein (LDL), triglycerides (TG), waist circumference, waist-hip ratio, and body weight (p < 0.05); PGC-1α and high-density lipoprotein (HDL) increased significantly (p = 0.000), in Group B when compared with Group A. Our study revealed that sea grape extract is a potent anti-obesity with an anti-aging reagent that does not produce any significant adverse effects.

9.
Clin Nutr ESPEN ; 49: 232-240, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35623818

RESUMEN

BACKGROUND AND AIMS: Obesity is currently a global issue and is a major cause of the metabolic disorder, including dyslipidemia. However, currently approved treatments have various limitations including serious side effects, numerous contraindications, and lack of acceptance. Caulerpa racemosa, also referred as Sea grapes, is a seaweed known for its various benefits. C. racemosa extract has the potential to improve lipid profile and role as an anti-obese agent. In order to maximize its health benefits, C. racemosa was made using kombucha drink as a carrier medium. This study aims to assess the effect of Sea grapes kombucha drink on lipase activity in vitro and lipid profile in vivo. METHODS: A lipase inhibition test was carried out by incubating Sea grapes kombucha drink compared with orlistat as the control in porcine pancreatic lipase and p-nitrophenyl butyrate in reaction buffer. A total of four groups were made, each containing 10 male swiss webster albino mice; group A received standard dry pellet diet as control, group B received cholesterol and fat-enriched diets (CFED), group C and D received CFED and 150 and 300 mg/kgBW of kombucha drink from Sea grapes respectively for 4 weeks. RESULTS: Sea grapes kombucha drink improved lipid profiles in the way of reducing total cholesterol, triglyceride, LDL, and increasing HDL levels compared to CFED and normal groups. The effect was more robust following the incrementing dose of the Sea grapes excluding total cholesterol. The lipase inhibitory activity of Sea grapes kombucha drink was similar to orlistat at a dose of 250 µg/mL, otherwise, orlistat was superior in the lower doses. CONCLUSIONS: Sea grapes kombucha drink treatment also induced weight loss and increased level of liver SOD. Kombucha drink from C. racemosa has good potential as a functional beverage with anti-obese and lipid improving activity.


Asunto(s)
Caulerpa , Vitis , Animales , Bebidas , Caulerpa/metabolismo , Colesterol , Humanos , Té de Kombucha , Lipasa/metabolismo , Lipasa/uso terapéutico , Masculino , Ratones , Obesidad/tratamiento farmacológico , Orlistat/uso terapéutico , Porcinos , Triglicéridos , Vitis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...