Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochemistry (Mosc) ; 85(11): 1434-1442, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33280583

RESUMEN

In response to stress, eubacteria reduce the level of protein synthesis and either disassemble ribosomes into the 30S and 50S subunits or turn them into translationally inactive 70S and 100S complexes. This helps the cell to solve two principal tasks: (i) to reduce the cost of protein biosynthesis under unfavorable conditions, and (ii) to preserve functional ribosomes for rapid recovery of protein synthesis until favorable conditions are restored. All known genes for ribosome silencing factors and hibernation proteins are located in the operons associated with the response to starvation as one of the stress factors, which helps the cells to coordinate the slowdown of protein synthesis with the overall stress response. It is possible that hibernation systems work as regulators that coordinate the intensity of protein synthesis with the energy state of bacterial cell. Taking into account the limited amount of nutrients in natural conditions and constant pressure of other stress factors, bacterial ribosome should remain most of time in a complex with the silencing/hibernation proteins. Therefore, hibernation is an additional stage between the ribosome recycling and translation initiation, at which the ribosome is maintained in a "preserved" state in the form of separate subunits, non-translating 70S particles, or 100S dimers. The evolution of the ribosome hibernation has occurred within a very long period of time; ribosome hibernation is a conserved mechanism that is essential for maintaining the energy- and resource-consuming process of protein biosynthesis in organisms living in changing environment under stress conditions.


Asunto(s)
Bacterias/metabolismo , Biosíntesis de Proteínas , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Bacterias/genética , Proteínas Ribosómicas/genética , Ribosomas/genética
2.
Biochemistry (Mosc) ; 85(5): 545-552, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32571184

RESUMEN

Ribosome-binding factor A (RbfA) from Staphylococcus aureus is a cold adaptation protein that is required for the growth of pathogenic cells at low temperatures (10-15°C). RbfA is involved in the processing of 16S rRNA, as well as in the assembly and stabilization of the small 30S ribosomal subunit. Structural studies of the 30S-RbfA complex will help to better understand their interaction, the mechanism of such complexes, and the fundamental process such as 30S subunit assembly that determines and controls the overall level of protein biosynthesis. This article describes protocols for preparation of RbfA and the small 30S ribosomal subunits and reconstitution and optimization of the 30S-RbfA complex to obtain samples suitable for cryo-electron microscopy studies.


Asunto(s)
Microscopía por Crioelectrón/métodos , Biosíntesis de Proteínas , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas Bacterianas/metabolismo , Staphylococcus aureus/metabolismo , Frío , Técnicas In Vitro , Modelos Moleculares , Proteínas Ribosómicas/química , Subunidades Ribosómicas Pequeñas Bacterianas/química , Staphylococcus aureus/crecimiento & desarrollo
3.
Mol Biol (Mosk) ; 53(4): 561-573, 2019.
Artículo en Ruso | MEDLINE | ID: mdl-31397432

RESUMEN

The protein synthesis in cells occurs in ribosomes, with the involvement of protein translational factors. One of these translational factors is the elongation factor P (EF-P). EF-P is a three-domain protein that binds between the P and E sites of the ribosome, near the P-tRNA, the peptidyl transferase center, and E-site codon of the mRNA. The majority of studies showed that the EF-P helps the ribosome to synthesize stalling amino acid motifs, such as polyprolines. In the first part of this review, we inspect the general evolutionary variety of the EF-P in different organisms, the problems of the regulation provided by the EF-P, and its role in the sustainability of the protein balance in the cell in different physiological states. Although the functions of the EF-P have been well studied, there are still some problems that remain to be solved. The data from recent studies contradict the previous theories. Consequently, in the second part, we discuss the recent data that suggest the involvement of the EF-P in each translocation event, not only in those related to poly-proline synthesis. This activity contradicts some aspects of the known pathway of the removal of the E-tRNA during the translocation event. In addition, in the third part of this review, we tried to partly shift the interest from the antistalling activity of domain I of the EF-P to the action of domain III, the functions of which has not been closely studied. We expand on the idea about the involvement of domain III of the EF-P in preventing the frameshift and debate the EF-P's evolutionary history.


Asunto(s)
Evolución Molecular , Factores de Elongación de Péptidos/metabolismo , Biosíntesis de Proteínas , Animales , Humanos , Factores de Elongación de Péptidos/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Ribosomas/química , Ribosomas/metabolismo
4.
Biochemistry (Mosc) ; 75(8): 989-94, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21073419

RESUMEN

Qß replicase is a protein complex responsible for the replication of the genomic RNA of bacteriophage Qß. In addition to the phage-encoded catalytic ß subunit, it recruits three proteins from the host Escherichia coli cell: elongation factors EF-Tu and EF-Ts and ribosomal protein S1. We prepared a chimeric Qß replicase in which the E. coli EF-Ts is replaced with EF-Ts from Thermus thermophilus. The chimeric protein is produced in E. coli cells during coexpression of the genes encoding the ß subunit and thermophilic EF-Ts. The developed isolation procedure yields a substantially homogeneous preparation of the chimeric replicase. Unlike the wild-type enzyme, the S1-less chimeric replicase could be crystallized. This result facilitates studies on the structure of Qß replicase and the mechanism of recognition of its templates that can replicate in vitro at a record rate.


Asunto(s)
Factores de Elongación de Péptidos/química , Q beta Replicasa/química , Thermus thermophilus/metabolismo , Cristalografía por Rayos X , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Subunidades de Proteína/química , Q beta Replicasa/aislamiento & purificación , Thermus thermophilus/genética
5.
Cell ; 106(2): 233-41, 2001 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-11511350

RESUMEN

Using X-ray crystallography, we have directly observed the path of mRNA in the 70S ribosome in Fourier difference maps at 7 A resolution. About 30 nucleotides of the mRNA are wrapped in a groove that encircles the neck of the 30S subunit. The Shine-Dalgarno helix is bound in a large cleft between the head and the back of the platform. At the interface, only about eight nucleotides (-1 to +7), centered on the junction between the A and P codons, are exposed, and bond almost exclusively to 16S rRNA. The mRNA enters the ribosome around position +13 to +15, the location of downstream pseudoknots that stimulate -1 translational frame shifting.


Asunto(s)
Conformación de Ácido Nucleico , ARN Mensajero/química , ARN Mensajero/metabolismo , Ribosomas/química , Ribosomas/metabolismo , Bacteriófago T4/genética , Emparejamiento Base , Secuencia de Bases , Sitios de Unión , Codón/genética , Cristalografía por Rayos X , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Análisis de Fourier , Sistema de Lectura Ribosómico , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Subunidades de Proteína , ARN Mensajero/genética , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Ribosomas/genética , Thermus thermophilus/química , Proteínas Virales/genética
6.
Science ; 292(5518): 883-96, 2001 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-11283358

RESUMEN

We describe the crystal structure of the complete Thermus thermophilus 70S ribosome containing bound messenger RNA and transfer RNAs (tRNAs) at 5.5 angstrom resolution. All of the 16S, 23S, and 5S ribosomal RNA (rRNA) chains, the A-, P-, and E-site tRNAs, and most of the ribosomal proteins can be fitted to the electron density map. The core of the interface between the 30S small subunit and the 50S large subunit, where the tRNA substrates are bound, is dominated by RNA, with proteins located mainly at the periphery, consistent with ribosomal function being based on rRNA. In each of the three tRNA binding sites, the ribosome contacts all of the major elements of tRNA, providing an explanation for the conservation of tRNA structure. The tRNAs are closely juxtaposed with the intersubunit bridges, in a way that suggests coupling of the 20 to 50 angstrom movements associated with tRNA translocation with intersubunit movement.


Asunto(s)
ARN Mensajero/química , ARN Ribosómico/química , ARN de Transferencia Aminoácido-Específico/química , ARN de Transferencia/química , Proteínas Ribosómicas/química , Ribosomas/química , Ribosomas/ultraestructura , Anticodón , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Sitios de Unión , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , Conformación Proteica , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , ARN Ribosómico/metabolismo , ARN de Transferencia/metabolismo , ARN de Transferencia Aminoácido-Específico/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Thermus thermophilus/química , Thermus thermophilus/ultraestructura
8.
RNA ; 6(5): 717-29, 2000 May.
Artículo en Inglés | MEDLINE | ID: mdl-10836793

RESUMEN

Ribosomal protein S8, which is essential for the assembly of the central domain of 16S rRNA, is one of the most thoroughly studied RNA-binding proteins. To map its surrounding RNA in the ribosome, we carried out directed hydroxyl radical probing of 16S rRNA using Fe(II) tethered to nine different positions on the surface of protein S8 in 70S ribosomes. Hydroxyl radical-induced cleavage was observed near the classical S8-binding site in the 620 stem, and flanking the other S8-footprinted regions of the central domain at the three-helix junction near position 650 and the 825 and 860 stems. In addition, cleavage near the 5' terminus of 16S rRNA, in the 300 region of its 5' domain, and in the 1070 region of its 3'-major domain provide information about the proximity to S8 of RNA elements not directly involved in its binding. These data, along with previous footprinting and crosslinking results, allowed positioning of protein S8 and its surrounding RNA elements in a 7.8-A map of the Thermus thermophilus 70S ribosome. The resulting model is in close agreement with the extensive body of data from previous studies using protein-protein and protein-RNA crosslinking, chemical and enzymatic footprinting, and genetics.


Asunto(s)
ARN Ribosómico 16S/química , Proteínas Ribosómicas/química , Ribosomas/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Radical Hidroxilo/química , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Conformación Proteica , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Ribosómico 16S/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Electricidad Estática , Thermus thermophilus/genética , Thermus thermophilus/metabolismo
9.
Science ; 285(5436): 2095-104, 1999 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-10497122

RESUMEN

Structures of 70S ribosome complexes containing messenger RNA and transfer RNA (tRNA), or tRNA analogs, have been solved by x-ray crystallography at up to 7.8 angstrom resolution. Many details of the interactions between tRNA and the ribosome, and of the packing arrangements of ribosomal RNA (rRNA) helices in and between the ribosomal subunits, can be seen. Numerous contacts are made between the 30S subunit and the P-tRNA anticodon stem-loop; in contrast, the anticodon region of A-tRNA is much more exposed. A complex network of molecular interactions suggestive of a functional relay is centered around the long penultimate stem of 16S rRNA at the subunit interface, including interactions involving the "switch" helix and decoding site of 16S rRNA, and RNA bridges from the 50S subunit.


Asunto(s)
ARN Ribosómico/química , ARN de Transferencia/química , Ribosomas/química , Ribosomas/fisiología , Thermus thermophilus/química , Anticodón/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Emparejamiento Base , Sitios de Unión , Cristalización , Cristalografía por Rayos X , Análisis de Fourier , Modelos Moleculares , Conformación de Ácido Nucleico , Factores de Elongación de Péptidos/metabolismo , Biosíntesis de Proteínas , Conformación Proteica , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo , ARN Ribosómico/metabolismo , ARN Ribosómico 16S/química , ARN Ribosómico 23S/química , ARN de Transferencia/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Ribosomas/ultraestructura , Thermus thermophilus/ultraestructura
10.
Science ; 285(5436): 2133-6, 1999 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-10497132

RESUMEN

The 7.8 angstrom crystal structure of the 70S ribosome reveals a discrete double-helical bridge (B4) that projects from the 50S subunit, making contact with the 30S subunit. Preliminary modeling studies localized its contact site, near the bottom of the platform, to the binding site for ribosomal protein S15. Directed hydroxyl radical probing from iron(II) tethered to S15 specifically cleaved nucleotides in the 715 loop of domain II of 23S ribosomal RNA, one of the known sites in 23S ribosomal RNA that are footprinted by the 30S subunit. Reconstitution studies show that protection of the 715 loop, but none of the other 30S-dependent protections, is correlated with the presence of S15 in the 30S subunit. The 715 loop is specifically protected by binding free S15 to 50S subunits. Moreover, the previously determined structure of a homologous stem-loop from U2 small nuclear RNA fits closely to the electron density of the bridge.


Asunto(s)
ARN Bacteriano/química , ARN Ribosómico 23S/química , Proteínas Ribosómicas/metabolismo , Ribosomas/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Escherichia coli/química , Radical Hidroxilo , Conformación de Ácido Nucleico , Conformación Proteica , ARN Bacteriano/metabolismo , ARN Ribosómico 23S/metabolismo , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/metabolismo , Proteínas Ribosómicas/química , Ribosomas/metabolismo , Ribosomas/ultraestructura , Thermus thermophilus/química
11.
Biochimie ; 73(7-8): 887-97, 1991.
Artículo en Inglés | MEDLINE | ID: mdl-1720668

RESUMEN

Three-dimensional crystals of the 70S ribosomes, the 70S ribosome-mRNA-tRNA complex, the 30S ribosomal subunits, several ribosomal proteins, the elongation factor G and threonyl- and seryl-tRNA synthetases from a Gram-negative extreme thermophilic bacterium, Thermus thermophilus, have been obtained at our institute. X-ray and neutronographic data from the 70S ribosome crystals have been collected up to 18 A and 60 A, respectively. Two-dimensional crystalline sheets of the 70S ribosomes have been studied by electron microscopy. Structural studies of crystals of 2 ribosomal proteins, L1 and S6, elongation factor G and threonyl- and seryl-tRNA synthetases are also in progress. At present, Thermus thermophilus seems to be the most suitable microorganism to isolate ribosomes and their constituents for crystallographic studies.


Asunto(s)
Ribosomas/química , Thermus thermophilus/química , Proteínas Bacterianas/química , Secuencia de Bases , Cristalografía , Microscopía Electrónica , Datos de Secuencia Molecular , Neutrones , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , ARN Bacteriano/química , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , Proteínas Ribosómicas/química , Ribosomas/ultraestructura , Thermus thermophilus/genética , Thermus thermophilus/ultraestructura , Difracción de Rayos X
13.
FEBS Lett ; 197(1-2): 229-33, 1986 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-3512304

RESUMEN

The hot tritium bombardment technique [(1976) Dokl. Akad. Nauk SSSR 228, 1237-1238] was used for studying the surface localization of ribosomal proteins on Escherichia coli ribosomes. The degree of tritium labeling of proteins was considered as a measure of their exposure (surface localization). Proteins S1, S4, S7, S9 and/or S11, S12 and/or L20, S13, S18, S20, S21, L5, L6, L7/L12, L10, L11, L16, L17, L24, L26 and L27 were shown to be the most exposed on the ribosome surface. The sets of exposed ribosomal proteins on the surface of 70 S ribosomes, on the one hand, and the surfaces of 50 S and 30 S ribosomal subunits in the dissociated state, on the other, were compared. It was found that the dissociation of ribosomes into subunits did not result in exposure of additional ribosomal proteins. The conclusion was drawn that proteins are absent from the contacting surfaces of the ribosomal subunits.


Asunto(s)
Escherichia coli/análisis , Proteínas Ribosómicas/análisis , Ribosomas/análisis , Electroforesis , Espectrometría de Fluorescencia , Tritio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...