Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS Lett ; 598(5): 537-547, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395592

RESUMEN

Here, we present the high-resolution structure of the Gallus gallus 80S ribosome obtained from cold-treated chicken embryos. The translationally inactive ribosome complex contains elongation factor eEF2 with GDP, SERPINE1 mRNA binding protein 1 (SERBP1) and deacylated tRNA in the P/E position, showing common features with complexes already described in mammals. Modeling of most expansion segments of G. gallus 28S ribosomal RNA allowed us to identify specific features in their structural organization and to describe areas where a marked difference between mammalian and avian ribosomes could shed light on the evolution of the expansion segments. This study provides the first structure of an avian ribosome, establishing a model for future structural and functional studies on the translational machinery in Aves.


Asunto(s)
ARN de Transferencia , Ribosomas , Embrión de Pollo , Animales , Microscopía por Crioelectrón , Modelos Moleculares , Ribosomas/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/química , Mamíferos/metabolismo
2.
Biochem Biophys Res Commun ; 699: 149545, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38277729

RESUMEN

The YsxC protein from Staphylococcus aureus is a GTP-binding protein from the TRAFAC superfamily of the TrmE-Era-EngA-EngB-Septin-like GTPase class, EngB family of GTPases. Recent structural and biochemical studies of YsxC function show that it is an integral part of the pathogenic microorganism life cycle, as it is involved in the assembly of the large 50S ribosomal subunit. Structural studies of this protein with its specific functional features make it an attractive target for further development of new selective antimicrobials. In this study, we cloned the ysxC protein gene from S. aureus, overexpressed the protein in E. coli, and subsequently purified and crystallized it. Protein crystals were successfully grown using the vapor diffusion method, yielding diffraction data with a resolution of up to 2 Å. Comparative analysis of the structure of SaYsxC with known three-dimensional structures of homologs from other microorganisms showed the presence of structural differences for the apo form.


Asunto(s)
GTP Fosfohidrolasas , Staphylococcus aureus , GTP Fosfohidrolasas/metabolismo , Staphylococcus aureus/metabolismo , Escherichia coli/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas de Unión al GTP/metabolismo , Cristalografía por Rayos X
3.
Structure ; 32(1): 74-82.e5, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38000368

RESUMEN

Ribosome biogenesis is an energy-intense multistep process where even minimal defects can cause severe phenotypes up to cell death. Ribosome assembly is facilitated by biogenesis factors such as ribosome assembly factors. These proteins facilitate the interaction of ribosomal proteins with rRNA and correct rRNA folding. One of these maturation factors is RimP which is required for efficient 16S rRNA processing and 30S ribosomal subunit assembly. Here, we describe the binding mode of Staphylococcus aureus RimP to the small ribosomal subunit and present a 4.2 Å resolution cryo-EM reconstruction of the 30S-RimP complex. Together with the solution structure of RimP solved by NMR spectroscopy and RimP-uS12 complex analysis by EPR, DEER, and SAXS approaches, we show the specificity of RimP binding to the 30S subunit from S. aureus. We believe the results presented in this work will contribute to the understanding of the RimP role in the ribosome assembly mechanism.


Asunto(s)
Proteínas Bacterianas , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/química , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/metabolismo , Dispersión del Ángulo Pequeño , Subunidades Ribosómicas Pequeñas Bacterianas/química , Difracción de Rayos X , Espectroscopía de Resonancia por Spin del Electrón , Proteínas Ribosómicas/química , Subunidades Ribosómicas Pequeñas/metabolismo , Microscopía por Crioelectrón
4.
Nature ; 625(7994): 393-400, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38030725

RESUMEN

One of the most critical steps of protein synthesis is coupled translocation of messenger RNA (mRNA) and transfer RNAs (tRNAs) required to advance the mRNA reading frame by one codon. In eukaryotes, translocation is accelerated and its fidelity is maintained by elongation factor 2 (eEF2)1,2. At present, only a few snapshots of eukaryotic ribosome translocation have been reported3-5. Here we report ten high-resolution cryogenic-electron microscopy (cryo-EM) structures of the elongating eukaryotic ribosome bound to the full translocation module consisting of mRNA, peptidyl-tRNA and deacylated tRNA, seven of which also contained ribosome-bound, naturally modified eEF2. This study recapitulates mRNA-tRNA2-growing peptide module progression through the ribosome, from the earliest states of eEF2 translocase accommodation until the very late stages of the process, and shows an intricate network of interactions preventing the slippage of the translational reading frame. We demonstrate how the accuracy of eukaryotic translocation relies on eukaryote-specific elements of the 80S ribosome, eEF2 and tRNAs. Our findings shed light on the mechanism of translation arrest by the anti-fungal eEF2-binding inhibitor, sordarin. We also propose that the sterically constrained environment imposed by diphthamide, a conserved eukaryotic posttranslational modification in eEF2, not only stabilizes correct Watson-Crick codon-anticodon interactions but may also uncover erroneous peptidyl-tRNA, and therefore contribute to higher accuracy of protein synthesis in eukaryotes.


Asunto(s)
Células Eucariotas , Biosíntesis de Proteínas , ARN Mensajero , Sistemas de Lectura , Ribosomas , Anticodón/genética , Anticodón/metabolismo , Codón/genética , Codón/metabolismo , Microscopía por Crioelectrón , Células Eucariotas/química , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Factor 2 de Elongación Peptídica/antagonistas & inhibidores , Factor 2 de Elongación Peptídica/metabolismo , Sistemas de Lectura/genética , Ribosomas/química , Ribosomas/metabolismo , Ribosomas/ultraestructura , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
5.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36768442

RESUMEN

Ribosome biogenesis is a complex and highly accurate conservative process of ribosomal subunit maturation followed by association. Subunit maturation comprises sequential stages of ribosomal RNA and proteins' folding, modification and binding, with the involvement of numerous RNAses, helicases, GTPases, chaperones, RNA, protein-modifying enzymes, and assembly factors. One such assembly factor involved in bacterial 30S subunit maturation is ribosomal binding factor A (RbfA). In this study, we present the crystal (determined at 2.2 Å resolution) and NMR structures of RbfA as well as the 2.9 Å resolution cryo-EM reconstruction of the 30S-RbfA complex from Staphylococcus aureus (S. aureus). Additionally, we show that the manner of RbfA action on the small ribosomal subunit during its maturation is shared between bacteria and mitochondria. The obtained results clarify the function of RbfA in the 30S maturation process and its role in ribosome functioning in general. Furthermore, given that S. aureus is a serious human pathogen, this study provides an additional prospect to develop antimicrobials targeting bacterial pathogens.


Asunto(s)
Proteínas de Escherichia coli , Staphylococcus aureus Resistente a Meticilina , Humanos , Proteínas Ribosómicas/metabolismo , Staphylococcus aureus/metabolismo , Staphylococcus aureus Resistente a Meticilina/genética , Proteínas de Escherichia coli/metabolismo , Bacterias/metabolismo , Mitocondrias/metabolismo , ARN Ribosómico 16S/metabolismo
6.
Cell ; 186(5): 1013-1025.e24, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36827973

RESUMEN

The emergence of drug-resistant tuberculosis has created an urgent need for new anti-tubercular agents. Here, we report the discovery of a series of macrolides called sequanamycins with outstanding in vitro and in vivo activity against Mycobacterium tuberculosis (Mtb). Sequanamycins are bacterial ribosome inhibitors that interact with the ribosome in a similar manner to classic macrolides like erythromycin and clarithromycin, but with binding characteristics that allow them to overcome the inherent macrolide resistance of Mtb. Structures of the ribosome with bound inhibitors were used to optimize sequanamycin to produce the advanced lead compound SEQ-9. SEQ-9 was efficacious in mouse models of acute and chronic TB as a single agent, and it demonstrated bactericidal activity in a murine TB infection model in combination with other TB drugs. These results support further investigation of this series as TB clinical candidates, with the potential for use in new regimens against drug-susceptible and drug-resistant TB.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Animales , Ratones , Antituberculosos/farmacología , Macrólidos , Farmacorresistencia Bacteriana , Claritromicina
7.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-36142845

RESUMEN

Ribosomal silencing factor S (RsfS) is a conserved protein that plays a role in the mechanisms of ribosome shutdown and cell survival during starvation. Recent studies demonstrated the involvement of RsfS in the biogenesis of the large ribosomal subunit. RsfS binds to the uL14 ribosomal protein on the large ribosomal subunit and prevents its association with the small subunit. Here, we estimated the contribution of RsfS amino acid side chains at the interface between RsfS and uL14 to RsfS anti-association function in Staphylococcus aureus through in vitro experiments: centrifugation in sucrose gradient profiles and an S. aureus cell-free system assay. The detected critical Y98 amino acid on the RsfS surface might become a new potential target for pharmacological drug development and treatment of S. aureus infections.


Asunto(s)
Biotina , Staphylococcus aureus , Aminoácidos/metabolismo , Proteínas Bacterianas/metabolismo , Biotina/metabolismo , Mutación , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Sacarosa/metabolismo
8.
Biomol NMR Assign ; 16(2): 373-377, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36070063

RESUMEN

The ribosomal maturation factor (RimP) is a 17.7 kDa protein and is the assembly factor of the 30S subunit. RimP is essential for efficient processing of 16S rRNA and maturation (assembly) of the 30S ribosome. It was suggested that RimP takes part in stabilization of the central pseudoknot at the early stages of the 30S subunit maturation, and this process may occur before the head domain assembly and later stages of the 30S assembly, but the mechanism of this interaction is still not fully understood. Here we report the assignment of the 1H, 13C and 15N chemical shift in the backbone and side chains of RimP from Staphylococcus aureus. Analysis of chemical shifts of the main chain using TALOS + suggests that the RimP contains eight ß-strands and three α-helices with the topology α1-ß1-ß2-α2- ß3- α3- ß4- ß5- ß6- ß7- ß8. Structural studies of RimP and its complex with the ribosome by integrated structural biology approaches (NMR spectroscopy, X-ray diffraction analysis and cryoelectron microscopy) will allow further screening of highly selective inhibitors of the translation of S. aureus.


Asunto(s)
Ribosomas , Staphylococcus aureus , Microscopía por Crioelectrón , Resonancia Magnética Nuclear Biomolecular , ARN Ribosómico 16S/metabolismo , Proteínas Ribosómicas/química , Ribosomas/metabolismo
9.
Biochemistry (Mosc) ; 87(6): 500-510, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35790407

RESUMEN

Solving the structures of bacterial, archaeal, and eukaryotic ribosomes by crystallography and cryo-electron microscopy has given an impetus for studying intracellular regulatory proteins affecting various stages of protein translation. Among them are ribosome hibernation factors, which have been actively investigated during the last decade. These factors are involved in the regulation of protein biosynthesis under stressful conditions. The main role of hibernation factors is the reduction of energy consumption for protein biosynthesis and preservation of existing functional ribosomes from degradation, which increases cell survival under unfavorable conditions. Despite a broad interest in this topic, only a few articles have been published on the ribosomal silencing factor S (RsfS). According to the results of these studies, RsfS can be assigned to the group of hibernation factors. However, recent structural studies of the 50S ribosomal subunit maturation demonstrated that RsfS has the features inherent to biogenesis factors for example, ability to bind to the immature ribosomal subunit (similar to the RsfS mitochondrial ortholog MALSU1, mitochondrial assembly of ribosomal large subunit 1). In this review, we summarized the information on the function and structural features RsfS, as well as compared RsfS with MALSU1 in order to answer the emerging question on whether RsfS is a hibernation factor or a ribosome biogenesis factor. We believe that this review might promote future studies of the RsfS-involving molecular mechanisms, which so far remain completely unknown.


Asunto(s)
Biotina , Ribosomas , Microscopía por Crioelectrón/métodos , Células Eucariotas , Biosíntesis de Proteínas
10.
Sci Adv ; 8(21): eabn1062, 2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35613268

RESUMEN

Candida albicans is a widespread commensal fungus with substantial pathogenic potential and steadily increasing resistance to current antifungal drugs. It is known to be resistant to cycloheximide (CHX) that binds to the E-transfer RNA binding site of the ribosome. Because of lack of structural information, it is neither possible to understand the nature of the resistance nor to develop novel inhibitors. To overcome this issue, we determined the structure of the vacant C. albicans 80S ribosome at 2.3 angstroms and its complexes with bound inhibitors at resolutions better than 2.9 angstroms using cryo-electron microscopy. Our structures reveal how a change in a conserved amino acid in ribosomal protein eL42 explains CHX resistance in C. albicans and forms a basis for further antifungal drug development.


Asunto(s)
Antifúngicos , Candida albicans , Antifúngicos/farmacología , Sitios de Unión , Microscopía por Crioelectrón , Humanos , Ribosomas/metabolismo
11.
Microorganisms ; 11(1)2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36677311

RESUMEN

Competition for nutrients and niches (CNN) is known to be one of the mechanisms for biocontrol mostly exhibited by Pseudomonas strains. Phenotypic and full genome analysis revealed Pseudomonas putida PCL1760 controlling tomato foot and root rot (TFRR) solely through CNN mechanism. Although the availability of nutrients and motility are the known conditions for CNN, persistence of bacteria through dormancy by ribosomal hibernation is a key phenomenon to evade both biotic and abiotic stress. To confirm this hypothesis, rsfS gene knockout mutant of PCL1760 (SB9) was first obtained through genetic constructions and compared with the wild type PCL1760. Primarily, relative expression of rsfS in PCL1760 was conducted on tomato seedlings which showed a higher expression at the apical part (1.02 ± 0.18) of the plant roots than the basal (0.41 ± 0.13). The growth curve and persistence in ceftriaxone after the induction of starvation with rifampicin were performed on both strains. Colonization on the tomato root by CFU and qPCR, including biocontrol ability against Fusarium, was also tested. The growth dynamics of both PCL1760 and SB9 in basal and rich medium statistically did not differ (p ≤ 0.05). There was a significant difference observed in persistence showing PCL1760 to be more persistent than its mutant SB9, while SB9 (pJeM2:rsfS) was 221.07 folds more than PCL1760. In colonization and biocontrol ability tests, PCL1760 was dominant over SB9 colonizing and controlling TFRR (in total, 3.044 × 104 to 6.95 × 103 fg/µL and 55.28% to 30.24%, respectively). The deletion of the rsfS gene in PCL1760 reduced the persistence and effectiveness of the strain, suggesting persistence as one important characteristic of the CNN.

12.
Front Mol Biosci ; 8: 738752, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34869582

RESUMEN

Cryo-electron microscopy is now used as a method of choice in structural biology for studying protein synthesis, a process mediated by the ribosome machinery. In order to achieve high-resolution structures using this approach, one needs to obtain homogeneous and stable samples, which requires optimization of ribosome purification in a species-dependent manner. This is especially critical for the bacterial small ribosomal subunit that tends to be unstable in the absence of ligands. Here, we report a protocol for purification of stable 30 S from the Gram-positive bacterium Staphylococcus aureus and its cryo-EM structures: in presence of spermidine at a resolution ranging between 3.4 and 3.6 Å and in its absence at 5.3 Å. Using biochemical characterization and cryo-EM, we demonstrate the importance of spermidine for stabilization of the 30 S via preserving favorable conformation of the helix 44.

13.
Nature ; 600(7889): 543-546, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34853469

RESUMEN

Translation of the genetic code into proteins is realized through repetitions of synchronous translocation of messenger RNA (mRNA) and transfer RNAs (tRNA) through the ribosome. In eukaryotes translocation is ensured by elongation factor 2 (eEF2), which catalyses the process and actively contributes to its accuracy1. Although numerous studies point to critical roles for both the conserved eukaryotic posttranslational modification diphthamide in eEF2 and tRNA modifications in supporting the accuracy of translocation, detailed molecular mechanisms describing their specific functions are poorly understood. Here we report a high-resolution X-ray structure of the eukaryotic 80S ribosome in a translocation-intermediate state containing mRNA, naturally modified eEF2 and tRNAs. The crystal structure reveals a network of stabilization of codon-anticodon interactions involving diphthamide1 and the hypermodified nucleoside wybutosine at position 37 of phenylalanine tRNA, which is also known to enhance translation accuracy2. The model demonstrates how the decoding centre releases a codon-anticodon duplex, allowing its movement on the ribosome, and emphasizes the function of eEF2 as a 'pawl' defining the directionality of translocation3. This model suggests how eukaryote-specific elements of the 80S ribosome, eEF2 and tRNAs undergo large-scale molecular reorganizations to ensure maintenance of the mRNA reading frame during the complex process of translocation.


Asunto(s)
Anticodón , Eucariontes , Anticodón/genética , Anticodón/metabolismo , Codón/genética , Eucariontes/genética , Factor 2 de Elongación Peptídica/química , Factor 2 de Elongación Peptídica/genética , Factor 2 de Elongación Peptídica/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/metabolismo
14.
Biochemistry (Mosc) ; 86(8): 926-941, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34488570

RESUMEN

Resolving first crystal structures of prokaryotic and eukaryotic ribosomes by our group has been based on the knowledge accumulated over the decades of studies, starting with the first electron microscopy images of the ribosome obtained by J. Pallade in 1955. In 1983, A. Spirin, then a Director of the Protein Research Institute of the USSR Academy of Sciences, initiated the first study aimed at solving the structure of ribosomes using X-ray structural analysis. In 1999, our group in collaboration with H. Noller published the first crystal structure of entire bacterial ribosome in a complex with its major functional ligands, such as messenger RNA and three transport RNAs at the A, P, and E sites. In 2011, our laboratory published the first atomic-resolution structure of eukaryotic ribosome solved by the X-ray diffraction analysis that confirmed the conserved nature of the main ribosomal functional components, such as the decoding and peptidyl transferase centers, was confirmed, and eukaryote-specific elements of the ribosome were described. Using X-ray structural analysis, we investigated general principles of protein biosynthesis inhibition in eukaryotic ribosomes, along with the mechanisms of antibiotic resistance. Structural differences between bacterial and eukaryotic ribosomes that determine the differences in their inhibition were established. These and subsequent atomic-resolution structures of the functional ribosome demonstrated for the first time the details of binding of messenger and transport RNAs, which was the first step towards understanding how the ribosome structure ultimately determines its functions.


Asunto(s)
Cristalografía por Rayos X , Biosíntesis de Proteínas , ARN Ribosómico/química , Ribosomas/química , Animales , Drosophila melanogaster , Eucariontes , Células Eucariotas/metabolismo , Humanos , Ligandos , Conformación Molecular , ARN Mensajero/química , Proteínas Ribosómicas/metabolismo , Saccharomyces cerevisiae , Tetrahymena thermophila , U.R.S.S.
15.
Cancers (Basel) ; 13(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34503202

RESUMEN

Protein biosynthesis is a vital process for all kingdoms of life. The ribosome is the massive ribonucleoprotein machinery that reads the genetic code, in the form of messenger RNA (mRNA), to produce proteins. The mechanism of translation is tightly regulated to ensure that cell growth is well sustained. Because of the central role fulfilled by the ribosome, it is not surprising that halting its function can be detrimental and incompatible with life. In bacteria, the ribosome is a major target of inhibitors, as demonstrated by the high number of small molecules identified to bind to it. In eukaryotes, the design of ribosome inhibitors may be used as a therapy to treat cancer cells, which exhibit higher proliferation rates compared to healthy ones. Exciting experimental achievements gathered during the last few years confirmed that the ribosome indeed represents a relevant platform for the development of anticancer drugs. We provide herein an overview of the latest structural data that helped to unveil the molecular bases of inhibition of the eukaryotic ribosome triggered by small molecules.

16.
FEBS Lett ; 594(21): 3551-3567, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32852796

RESUMEN

Staphylococcus aureus is a bacterial pathogen and one of the leading causes of healthcare-acquired infections in the world. The growing antibiotic resistance of S. aureus obliges us to search for new drugs and treatments. As the majority of antibiotics target the ribosome, knowledge of its detailed structure is crucial for drug development. Here, we report the cryo-EM reconstruction at 3.2 Å resolution of the S. aureus ribosome with P-site tRNA, messenger RNA, and 10 RNA modification sites previously not assigned or visualized. The resulting model is the most precise and complete high-resolution structure to date of the S. aureus 70S ribosome with functional ligands.


Asunto(s)
Microscopía por Crioelectrón , Ribosomas/química , Ribosomas/ultraestructura , Staphylococcus aureus/química , Staphylococcus aureus/ultraestructura , Ligandos , Modelos Moleculares , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico 16S/química , ARN Ribosómico 23S/química , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Reproducibilidad de los Resultados , Ribosomas/metabolismo
17.
FEBS Open Bio ; 10(7): 1342-1347, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32436337

RESUMEN

Antibiotic-resistant Staphylococcus aureus is becoming a major burden on health care systems in many countries, necessitating the identification of new targets for antibiotic development. Elongation Factor P (EF-P) is a highly conserved elongation protein factor that plays an important role in protein synthesis and bacteria virulence. EF-P undergoes unique posttranslational modifications in a stepwise manner to function correctly, but experimental information on EF-P posttranslational modifications is currently lacking for S. aureus. Here, we expressed EF-P in S. aureus to analyze its posttranslational modifications by mass spectrometry and report experimental proof of 5-aminopentanol modification of S. aureus EF-P.


Asunto(s)
Factores de Elongación de Péptidos/metabolismo , Staphylococcus aureus/metabolismo , Espectrometría de Masas , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/aislamiento & purificación , Procesamiento Proteico-Postraduccional
18.
Nat Commun ; 11(1): 1656, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32245971

RESUMEN

For the sake of energy preservation, bacteria, upon transition to stationary phase, tone down their protein synthesis. This process is favored by the reversible binding of small stress-induced proteins to the ribosome to prevent unnecessary translation. One example is the conserved bacterial ribosome silencing factor (RsfS) that binds to uL14 protein onto the large ribosomal subunit and prevents its association with the small subunit. Here we describe the binding mode of Staphylococcus aureus RsfS to the large ribosomal subunit and present a 3.2 Å resolution cryo-EM reconstruction of the 50S-RsfS complex together with the crystal structure of uL14-RsfS complex solved at 2.3 Å resolution. The understanding of the detailed landscape of RsfS-uL14 interactions within the ribosome shed light on the mechanism of ribosome shutdown in the human pathogen S. aureus and might deliver a novel target for pharmacological drug development and treatment of bacterial infections.


Asunto(s)
Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Desarrollo de Medicamentos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Subunidades Ribosómicas
19.
Eur Biophys J ; 49(3-4): 223-230, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32152681

RESUMEN

Elongation factor P (EF-P) is a translation protein factor that plays an important role in specialized translation of consecutive proline amino acid motifs. EF-P is an essential protein for cell fitness in native environmental conditions. It regulates synthesis of proteins involved in bacterial motility, environmental adaptation and bacterial virulence, thus making EF-P a potential drug target. In the present study, we determined the solution and crystal structure of EF-P from the pathogenic bacteria Staphylococcus aureus at 1.48 Å resolution. The structure can serve as a platform for structure-based drug design of novel antibiotics to combat the growing antibiotic resistance of S. aureus.


Asunto(s)
Proteínas Bacterianas/química , Resonancia Magnética Nuclear Biomolecular , Factores de Elongación de Péptidos/química , Staphylococcus aureus , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Factores de Elongación de Péptidos/metabolismo , Dominios Proteicos
20.
J Struct Biol ; 209(1): 107408, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31669310

RESUMEN

Staphylococcus aureus hibernation promoting factor (SaHPF) is responsible for the formation of 100S ribosome dimers, which in turn help this pathogen to reduce energy spent under unfavorable conditions. Ribosome dimer formation strongly depends on the dimerization of the C-terminal domain of SaHPF (CTDSaHPF). In this study, we solved the crystal structure of CTDSaHPF at 1.6 Šresolution and obtained a precise arrangement of the dimer interface. Residues Phe160, Val162, Thr171, Ile173, Tyr175, Ile185 andThr187 in the dimer interface of SaHPF protein were mutated and the effects were analyzed for the formation of 100S disomes of ribosomes isolated from S. aureus. It was shown that substitution of any of single residues Phe160, Val162, Ile173, Tyr175 and Ile185 in the SaHPF homodimer interface abolished the ribosome dimerization in vitro.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Ribosómicas/genética , Ribosomas/genética , Infecciones Estafilocócicas/genética , Staphylococcus aureus/ultraestructura , Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Microscopía por Crioelectrón , Dimerización , Hibernación/genética , Humanos , Unión Proteica/genética , Proteínas Ribosómicas/química , Proteínas Ribosómicas/ultraestructura , Ribosomas/ultraestructura , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA