Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Cell Physiol ; 53(1): 244-55, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22138099

RESUMEN

Arbuscular mycorrhizas (AMs) are symbiotic interactions established within the roots of most plants by soil fungi belonging to the Glomeromycota. The extensive accommodation of the fungus in the root tissues largely takes place intracellularly, within a specialized interface compartment surrounded by the so-called perifungal membrane, an extension of the host plasmalemma. By combining live confocal imaging of green fluorescent protein (GFP)-tagged proteins and transmission electron microscopy (TEM), we have investigated the mechanisms leading to the biogenesis of this membrane. Our results show that pre-penetration responses and symbiotic interface construction are associated with extensive membrane dynamics. They involve the main components of the exocytotic machinery, with a major participation of the Golgi apparatus, as revealed by both TEM and in vivo GFP imaging. The labeling of known exocytosis markers, such as v-SNARE proteins of the VAMP72 family and the EXO84b subunit of the exocyst complex, allowed live imaging of the cell components involved in perifungal membrane construction, clarifying how this takes place ahead of the growing intracellular hypha. Lastly, our novel data are used to illustrate a model of membrane dynamics within the pre-penetration apparatus during AM fungal penetration.


Asunto(s)
Membrana Celular/metabolismo , Exocitosis , Micorrizas/citología , Micorrizas/metabolismo , Biomarcadores/metabolismo , Compartimento Celular , Membrana Celular/ultraestructura , Daucus carota/citología , Daucus carota/metabolismo , Daucus carota/microbiología , Daucus carota/ultraestructura , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Proteínas Fluorescentes Verdes/metabolismo , Medicago truncatula/citología , Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Modelos Biológicos , Micorrizas/ultraestructura , Proteínas de Plantas/metabolismo , Proteínas Recombinantes de Fusión/metabolismo
3.
Plant J ; 23(6): 703-13, 2000 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10998182

RESUMEN

NtHSP18P (HSP18), a cytosolic class I small heat-shock protein from tobacco pollen grains, was expressed in Escherichia coli. The viability of these cells was improved by 50% at 50 degrees C, demonstrating its functionality in vivo. Purified recombinant protein formed 240 kDa HSP18 oligomers, irrespective of temperature. These oligomers interacted with the model substrate citrate synthase (CS) to form large complexes in a temperature-dependent manner. Furthermore, HSP18 prevented thermally induced aggregation of CS at 45 degrees C. The fluorescence probe bis-ANS revealed the exposure of HSP18 hydrophobic surfaces at this temperature. Reactivation of chemically denatured CS was also significantly enhanced by HSP18. Surprisingly, HSP18 function was inhibited (in contrast to the related chaperone alphabeta-crystallin and plant sHSPs studied so far) by the presence of ATP in a concentration-dependent manner. The conformational changes of HSP18 imposed by ATP binding were indicated by the difference in the quenching of intrinsic tryptophan fluorescence, and implied more compact structure with ATP. Fluorescence measurements with bis-ANS showed that the conformational shift of HSP18 is suppressed in the presence of ATP. Decreased chaperone activity of HSP18 in the presence of ATP is caused by the lower affinity of conformationally blocked HSP18 for the substrate, as demonstrated by a higher susceptibility of model substrate, malate dehydrogenase, to proteolytic cleavage. Our results suggest that the chaperone activity of some plant sHSPs could be regulated by the availability of ATP in the cytoplasm, which would provide a mechanism to monitor the cell environment, control biological activity of sHSPs, and coordinate it with other ATP-dependent chaperones such as HSP70.


Asunto(s)
Adenosina Trifosfato/fisiología , Proteínas Bacterianas , Proteínas de Choque Térmico/fisiología , Chaperonas Moleculares/metabolismo , Nicotiana/genética , Proteínas de Plantas , Plantas Tóxicas , Cristalinas/fisiología , Escherichia coli/genética , Proteínas de Choque Térmico/antagonistas & inhibidores , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Hidrólisis , Malato Deshidrogenasa/metabolismo , Temperatura , Triptófano/fisiología
5.
FEBS Lett ; 403(3): 303-8, 1997 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-9091322

RESUMEN

Rab GTPases play a central role in the control of vesicular membrane traffic. These proteins cycle between cytosolic and membrane-bound compartments in a guanine nucleotide-dependent manner, a process that is regulated by several accessory proteins. Of particular interest are the Rab guanosine nucleotide diphosphate dissociation inhibitor proteins (Rab-GDI) which bind to prenylated Rab GTPases, slow the rate of GDP dissociation and escort GDP bound Rab proteins to their target membranes and retrieve them after completion of their catalytic cycle. We have cloned from Arabidopsis thaliana a cDNA coding for the Rab guanosine diphosphate dissociation inhibitor (AtGDI1) by functional complementation of the Saccharomyces cerevisiae sec19-1 mutant. The Arabidopsis cDNA potentially encodes a 49850 Da protein which is homologous to yeast GDI (49%) and to other members of the Rab-GDI family (49-63%). Northern blot analysis indicates that the mRNA is expressed in all tissues examined. The existence of a plant homologue of the Rab-GDI family indicates that the basic vesicle traffic control machinery may be highly conserved in plants as it is in yeast and mammals.


Asunto(s)
ADN Complementario/genética , Proteínas de Unión al GTP/genética , Inhibidores de Disociación de Guanina Nucleótido , Mutación , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Clonación Molecular , Dosificación de Gen , Prueba de Complementación Genética , Datos de Secuencia Molecular , Filogenia , ARN Mensajero/análisis , ARN de Planta/análisis , Alineación de Secuencia , Análisis de Secuencia de ADN
6.
Proc Natl Acad Sci U S A ; 94(2): 762-7, 1997 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-9012859

RESUMEN

Vesicle traffic between the endoplasmic reticulum and the Golgi apparatus in mammals requires the small GTP-binding protein Rab2, but Saccharomyces cerevisiae appears not to have a Rab2 homolog. Here it is shown that the higher plant, Arabidopsis thaliana, contains a gene, At-RAB2, whose predicted product shares 79% identity with human Rab2 protein. Transgenic plants containing fusions between beta-glucuronidase and sequences upstream of At-RAB2 demonstrated histochemical staining predominantly in maturing pollen and rapidly growing organs of germinating seedlings. beta-glucuronidase activity in pollen is first detectable at microspore mitosis and increases thereafter. In this respect, the promoter of At-RAB2 behaves like those of class II pollen-specific genes, whose products are often required after germination for pollen tube growth. Seedling germination and pollen tube growth are notable for their unusually high rates of cell wall and membrane biosynthesis. These results are consistent with a role for At-RAB2 in secretory activity.


Asunto(s)
Arabidopsis/fisiología , Proteínas de Unión al GTP/fisiología , Polen/fisiología , Secuencia de Aminoácidos , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente , ARN de Planta/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Proteína de Unión al GTP rab2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA