Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 216(2): 463-476, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28100685

RESUMEN

In plants, regulated cell death (RCD) plays critical roles during development and is essential for plant-specific responses to abiotic and biotic stresses. Ferroptosis is an iron-dependent, oxidative, nonapoptotic form of cell death recently described in animal cells. In animal cells, this process can be triggered by depletion of glutathione (GSH) and accumulation of lipid reactive oxygen species (ROS). We investigated whether a similar process could be relevant to cell death in plants. Remarkably, heat shock (HS)-induced RCD, but not reproductive or vascular development, was found to involve a ferroptosis-like cell death process. In root cells, HS triggered an iron-dependent cell death pathway that was characterized by depletion of GSH and ascorbic acid and accumulation of cytosolic and lipid ROS. These results suggest a physiological role for this lethal pathway in response to heat stress in Arabidopsis thaliana The similarity of ferroptosis in animal cells and ferroptosis-like death in plants suggests that oxidative, iron-dependent cell death programs may be evolutionarily ancient.


Asunto(s)
Arabidopsis/metabolismo , Respuesta al Choque Térmico , Calor , Hierro/metabolismo , Estrés Oxidativo , Antioxidantes/farmacología , Arabidopsis/efectos de los fármacos , Ácido Ascórbico/metabolismo , Muerte Celular , Evolución Molecular , Glutatión/metabolismo , Respuesta al Choque Térmico/efectos de los fármacos , Quelantes del Hierro/farmacología , Peroxidación de Lípido , Microscopía Fluorescente , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Factores de Tiempo
2.
Plant Signal Behav ; 8(10): doi: 10.4161/psb.25714, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23887494

RESUMEN

Previously considered as toxic by-products of aerobic metabolism, reactive oxygen species (ROS) are emerging as essential signaling molecules in eukaryotes. Recent evidence showed that maintenance of ROS homeostasis during female gametophyte development is crucial for embryo sac patterning and fertilization. Although ROS are exclusively detected in the central cell of mature embryo sacs, the study of mutants deficient in ROS homeostasis suggests that controlled oxidative bursts might take place earlier during gametophyte development. Also, a ROS burst that depends on pollination takes place inside the embryo sac. This oxidative response might be required for pollen tube growth arrest and for sperm cell release. In this mini-review, we will focus on new insights into the role of ROS during female gametophyte development and fertilization. Special focus will be made on the mitochondrial Mn-Superoxide dismutase (MSD1), which has been recently reported to be essential for maintaining ROS homeostasis during embryo sac formation.


Asunto(s)
Arabidopsis/embriología , Arabidopsis/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Semillas/embriología , Semillas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fertilización/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología
3.
Plant Cell ; 25(5): 1573-91, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23653473

RESUMEN

Reactive oxygen species (ROS) can function as signaling molecules, regulating key aspects of plant development, or as toxic compounds leading to oxidative damage. In this article, we show that the regulation of ROS production during megagametogenesis is largely dependent on MSD1, a mitochondrial Mn-superoxide dismutase. Wild-type mature embryo sacs show ROS exclusively in the central cell, which appears to be the main source of ROS before pollination. Accordingly, MSD1 shows a complementary expression pattern. MSD1 expression is elevated in the egg apparatus at maturity but is downregulated in the central cell. The oiwa mutants are characterized by high levels of ROS detectable in both the central cell and the micropylar cells. Remarkably, egg apparatus cells in oiwa show central cell features, indicating that high levels of ROS result in the expression of central cell characteristic genes. Notably, ROS are detected in synergid cells after pollination. This ROS burst depends on stigma pollination but precedes fertilization, suggesting that embryo sacs sense the imminent arrival of pollen tubes and respond by generating an oxidative environment. Altogether, we show that ROS play a crucial role during female gametogenesis and fertilization. MSD1 activity seems critical for maintaining ROS localization and important for embryo sac patterning.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Óvulo Vegetal/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Semillas/metabolismo , Superóxido Dismutasa/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Fertilización/genética , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hibridación in Situ , Microscopía Fluorescente , Mitocondrias/enzimología , Mitocondrias/genética , Mutación , Óvulo Vegetal/genética , Óvulo Vegetal/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Tubo Polínico/genética , Tubo Polínico/crecimiento & desarrollo , Tubo Polínico/metabolismo , Polinización/genética , Semillas/genética , Semillas/crecimiento & desarrollo , Superóxido Dismutasa/genética
4.
Ann Bot ; 105(5): 801-10, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-19556267

RESUMEN

BACKGROUND: Nitric oxide (NO) is a signalling and physiologically active molecule in animals, plants and bacteria. The specificity of the molecular mechanism(s) involved in transducing the NO signal within and between cells and tissues is still poorly understood. NO has been shown to be an emerging and potent signal molecule in plant growth, development and stress physiology. The NO donor S-nitrosoglutathion (GSNO) was shown to be a biologically active compound in plants and a candidate for NO storage and/or mobilization between plant tissues and cells. NO has been implicated as a central component in maintaining iron bioavailavility in plants. SCOPE AND CONCLUSIONS: Iron is an essential nutrient for almost all organisms. This review presents an overview of the functions of NO in iron metabolism in animals and discusses how NO production constitutes a key response in plant iron sensing and availability. In plants, NO drives downstream responses to both iron deficiency and iron overload. NO-mediated improvement of iron nutrition in plants growing under iron-deficient conditions represents a powerful tool to cope with soils displaying low iron availability. An interconversion between different redox forms based on the iron and NO status of the plant cells might be the core of a metabolic process driving plant iron homeostasis. Frataxin, a recently identified protein in plants, plays an important role in mitochondria biogenesis and in maintaining mitochondrial iron homeostasis. Evidence regarding the interaction between frataxin, NO and iron from analysis of frataxin knock-down Arabidopsis thaliana mutants is reviewed and discussed.


Asunto(s)
Proteínas de Unión a Hierro/metabolismo , Hierro/metabolismo , Óxido Nítrico/metabolismo , Regulación de la Expresión Génica de las Plantas , Modelos Biológicos , Frataxina
5.
FEBS Lett ; 583(3): 542-8, 2009 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-19114041

RESUMEN

Frataxin is a mitochondrial protein that is conserved throughout evolution. In yeast and mammals, frataxin is essential for cellular iron (Fe) homeostasis and survival during oxidative stress. In plants, frataxin deficiency causes increased reactive oxygen species (ROS) production and high sensitivity to oxidative stress. In this work we show that a knock-down T-DNA frataxin-deficient mutant of Arabidopsis thaliana (atfh-1) contains increased total and organellar Fe levels. Frataxin deficiency leads also to nitric oxide (NO) accumulation in both, atfh-1 roots and frataxin null mutant yeast. Abnormally high NO production might be part of the defence mechanism against Fe-mediated oxidative stress.


Asunto(s)
Arabidopsis/metabolismo , Proteínas de Unión a Hierro/metabolismo , Hierro/metabolismo , Óxido Nítrico/metabolismo , Estrés Oxidativo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Unión a Hierro/genética , Fenotipo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Frataxina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA