Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol J ; 19(4): e2300343, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38622786

RESUMEN

Due to the degeneracy of the genetic code, most amino acids are encoded by several codons. The choice among synonymous codons at the N-terminus of genes has a profound effect on protein expression in Escherichia coli. This is often explained by the different contributions of synonymous codons to mRNA secondary structure formation. Strong secondary structures at the 5'-end of mRNA interfere with ribosome binding and affect the process of translation initiation. In silico optimization of the gene 5'-end can significantly increase the level of protein expression; however, this method is not always effective due to the uncertainty of the exact mechanism by which synonymous substitutions affect expression; thus, it may produce nonoptimal variants as well as miss some of the best producers. In this paper, an alternative approach is proposed based on screening a partially randomized library of expression constructs comprising hundreds of selected synonymous variants. The effect of such substitutions was evaluated using the gene of interest fused to the reporter gene of the fluorescent protein with subsequent screening for the most promising candidates according to the reporter's signal intensity. The power of the approach is demonstrated by a significant increase in the prokaryotic expression of three proteins: canine cystatin C, human BCL2-associated athanogene 3 and human cardiac troponin I. This simple approach was suggested which may provide an efficient, easy, and inexpensive optimization method for poorly expressed proteins in bacteria.


Asunto(s)
Escherichia coli , Código Genético , Animales , Perros , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/genética , Codón/genética , Codón/metabolismo , ARN Mensajero/genética
2.
Biochemistry (Mosc) ; 88(Suppl 1): S176-S191, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37069120

RESUMEN

Recombinant proteins expressed in Escherichia coli are widely used in biochemical research and industrial processes. At the same time, achieving higher protein expression levels and correct protein folding still remains the key problem, since optimization of nutrient media, growth conditions, and methods for induction of protein synthesis do not always lead to the desired result. Often, low protein expression is determined by the sequences of the expressed genes and their regulatory regions. The genetic code is degenerated; 18 out of 20 amino acids are encoded by more than one codon. Choosing between synonymous codons in the coding sequence can significantly affect the level of protein expression and protein folding due to the influence of the gene nucleotide composition on the probability of formation of secondary mRNA structures that affect the ribosome binding at the translation initiation phase, as well as the ribosome movement along the mRNA during elongation, which, in turn, influences the mRNA degradation and the folding of the nascent protein. The nucleotide composition of the mRNA untranslated regions, in particular the promoter and Shine-Dalgarno sequences, also affects the efficiency of mRNA transcription, translation, and degradation. In this review, we describe the genetic principles that determine the efficiency of protein production in Escherichia coli.


Asunto(s)
Escherichia coli , Nucleótidos , Escherichia coli/genética , Escherichia coli/metabolismo , Nucleótidos/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Codón/metabolismo , ARN Mensajero/metabolismo , Proteínas Recombinantes , Biosíntesis de Proteínas
3.
Clin Chim Acta ; 542: 117281, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36918061

RESUMEN

BACKGROUND: Blood measurement of cardiac troponin T (cTnT) is one of the most widespread methods of acute myocardial infarction (MI) diagnosis. cTnT degradation may have a significant influence on the precision of cTnT immunodetection; however, there are no consistent data describing the level and sites of cTnT proteolysis in the blood of MI patients. In this study, we bordered major cTnT fragments and quantified their relative abundance in the blood at different times after MI. METHODS: Serial heparin plasma samples were collected from 37 MI patients 2-37 h following the onset of MI. cTnT and its fragments were studied by western blotting and immunofluorescence analysis using monoclonal antibodies specific to various cTnT epitopes. RESULTS: cTnT was present in the blood of MI patients as 23 proteolytic fragments with an apparent molecular mass of âˆ¼ 8-37 kDa. Two major sites of cTnT degradation were identified: between amino acid residues (aar) 68 and 69 and between aar 189 and 223. Analysis of the abundance of cTnT fragments showed an increase in the fraction of free central fragments in the first few hours after MI, while the fraction of the C-terminal fragments of cTnT remained almost unchanged. CONCLUSION: cTnT progressively degrades after MI and appears in the blood as a mixture of 23 proteolytic fragments. The cTnT region approximately bordered by aar 69-158 is a promising target for antibodies used for measurement of total cTnT.


Asunto(s)
Infarto del Miocardio , Troponina T , Humanos , Western Blotting , Proteolisis , Heparina , Biomarcadores
4.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34830136

RESUMEN

The selection of technological parameters for nanoparticle formulation represents a complicated development phase. Therefore, the statistical analysis based on Box-Behnken methodology is widely used to optimize technological processes, including poly(lactic-co-glycolic acid) nanoparticle formulation. In this study, we applied a two-level three-factor design to optimize the preparation of nanoparticles loaded with cobalt (CoTPP), manganese (MnClTPP), and nickel (NiTPP) metalloporphyrins (MeP). The resulting nanoparticles were examined by dynamic light scattering, X-ray diffraction, Fourier transform infrared spectroscopy, MTT test, and hemolytic activity assay. The optimized model of nanoparticle formulation was validated, and the obtained nanoparticles possessed a spherical shape and physicochemical characteristics enabling them to deliver MeP in cancer cells. In vitro hemolysis assay revealed high safety of the formulated MeP-loaded nanoparticles. The MeP release demonstrated a biphasic profile and release mechanism via Fick diffusion, according to release exponent values. Formulated MeP-loaded nanoparticles revealed significant antitumor activity and ability to generate reactive oxygen species. MnClTPP- and CoTPP-nanoparticles specifically accumulated in tissues, preventing wide tissue distribution caused by long-term circulation of the hydrophobic drug. Our results suggest that MnClTPP- and CoTPP-nanoparticles represent the greatest potential for utilization in in anticancer therapy due to their effectiveness and safety.


Asunto(s)
Complejos de Coordinación/farmacocinética , Metaloporfirinas/farmacocinética , Metales/química , Nanopartículas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Porfirinas/química , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Liberación de Fármacos , Femenino , Células HeLa , Hemólisis/efectos de los fármacos , Humanos , Células MCF-7 , Metaloporfirinas/química , Metaloporfirinas/farmacología , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , Nanopartículas/ultraestructura , Ratas Wistar , Espectroscopía Infrarroja por Transformada de Fourier , Distribución Tisular , Difracción de Rayos X
5.
J Genet Eng Biotechnol ; 19(1): 155, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34648110

RESUMEN

BACKGROUND: Difficult to express peptides are usually produced by co-expression with fusion partners. In this case, a significant mass part of the recombinant product falls on the subsequently removed fusion partner. On the other hand, multimerization of peptides is known to improve its proteolytic stability in E. coli due to the inclusion of body formation, which is sequence specific. Thereby, the peptide itself may serve as a fusion partner and one may produce more than one mole of the desired product per mole of fusion protein. This paper proposes a method for multimeric production of a human alpha-fetoprotein fragment with optimized multimer design and processing. This fragment may further find its application in the cytotoxic drug delivery field or as an inhibitor of endogenous alpha-fetoprotein. RESULTS: Multimerization of the extended alpha-fetoprotein receptor-binding peptide improved its stability in E. coli, and pentamer was found to be the largest stable with the highest expression level. As high as 10 aspartate-proline bonds used to separate peptide repeats were easily hydrolyzed in optimized formic acid-based conditions with 100% multimer conversion. The major product was represented by unaltered functional alpha-fetoprotein fragment while most side-products were its formyl-Pro, formyl-Tyr, and formyl-Lys derivatives. Single-step semi-preparative RP-HPLC was enough to separate unaltered peptide from the hydrolysis mixture. CONCLUSIONS: A recombinant peptide derived from human alpha-fetoprotein can be produced via multimerization with subsequent formic acid hydrolysis and RP-HPLC purification. The reported procedure is characterized by the lower reagent cost in comparison with enzymatic hydrolysis of peptide fusions and solid-phase synthesis. This method may be adopted for different peptide expression, especially with low amino and hydroxy side chain content.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...