Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Bot ; 107(12): 1677-1692, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33315246

RESUMEN

PREMISE: We tested 25 classic and novel hypotheses regarding trait-origin, trait-trait, and trait-environment relationships to account for flora-wide variation in life history, habit, and especially reproductive traits using a plastid DNA phylogeny of most native (96.6%, or 1494/1547 species) and introduced (87.5%, or 690/789 species) angiosperms in Wisconsin, USA. METHODS: We assembled data on life history, habit, flowering, dispersal, mating system, and occurrence across open/closed/mixed habitats across species in the state phylogeny. We used phylogenetically structured analyses to assess the strength and statistical significance of associations predicted by our models. RESULTS: Introduced species are more likely to be annual herbs, occupy open habitats, have large, visually conspicuous, hermaphroditic flowers, and bear passively dispersed seeds. Among native species, hermaphroditism is associated with larger, more conspicuous flowers; monoecy is associated with small, inconspicuous flowers and passive seed dispersal; and dioecy is associated with small, inconspicuous flowers and fleshy fruits. Larger flowers with more conspicuous colors are more common in open habitats, and in understory species flowering under open (spring) canopies; fleshy fruits are more common in closed habitats. Wind pollination may help favor dioecy in open habitats. CONCLUSIONS: These findings support predictions regarding how breeding systems depend on flower size, flower color, and fruit type, and how those traits depend on habitat. This study is the first to combine flora-wide phylogenies with complete trait databases and phylogenetically structured analyses to provide powerful tests of evolutionary hypotheses about reproductive traits and their variation with geographic source, each other, and environmental conditions.


Asunto(s)
Magnoliopsida , Flores , Magnoliopsida/genética , Fitomejoramiento , Polinización , Historia Reproductiva , Wisconsin
2.
Am J Bot ; 105(11): 1938-1950, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30408151

RESUMEN

PREMISE OF THE STUDY: We used spatial phylogenetics to analyze the assembly of the Wisconsin flora, linking processes of dispersal and niche evolution to spatial patterns of floristic and phylogenetic diversity and testing whether phylogenetic niche conservatism can account for these patterns. METHODS: We used digitized records and a new molecular phylogeny for 93% of vascular plants in Wisconsin to estimate spatial variation in species richness and phylogenetic α and ß diversity in a native flora shaped mainly by postglacial dispersal and response to environmental gradients. We developed distribution models for all species and used these to infer fine-scale variation in potential diversity, phylogenetic distance, and interspecific range overlaps. We identified 11 bioregions based on floristic composition, mapped areas of neo- and paleo-endemism to establish new conservation priorities and predict how community-assembly patterns should shift with climatic change. KEY RESULTS: Spatial phylogenetic turnover most strongly reflects differences in temperature and spatial distance. For all vascular plants, assemblages shift from phylogenetically clustered to overdispersed northward, contrary to most other studies. This pattern is lost for angiosperms alone, illustrating the importance of phylogenetic scale. CONCLUSIONS: Species ranges and assemblage composition appear driven primarily by phylogenetic niche conservatism. Closely related species are ecologically similar and occupy similar territories. The average level and geographic structure of plant phylogenetic diversity within Wisconsin are expected to greatly decline over the next half century, while potential species richness will increase throughout the state. Our methods can be applied to allochthonous communities throughout the world.


Asunto(s)
Evolución Biológica , Ecosistema , Tracheophyta/genética , Cambio Climático , Predicción , Filogeografía , Wisconsin
3.
Mol Phylogenet Evol ; 95: 183-95, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26702956

RESUMEN

The role of geography and ecology in speciation are often discussed in the context of phylogenetic niche conservatism (PNC), the propensity of lineages to retain ancestral niche related traits. However, a recent paradigm shift focuses instead on measuring divergence of these traits in conjunction with patterns of speciation. Under this framework, we analyzed the diversification of North America's third most diverse family, Cyperaceae ("sedges"), using a modified Parsimony Analysis of Endemicity approach to identify floristic regions and ordination statistics to quantify species distribution in a continuous manner. Utilizing over 200,000 georeferenced specimens, we characterized the geographical distribution and climatic and edaphic niche space occupied by each species. We constructed a supermatrix phylogeny of the North American sedge flora, aided in part by the sequencing of all sedges of Wisconsin, and employed a multifaceted approach to assess the role of geographical and ecological divergence on lineage diversification. In addition to measuring phylogenetic signal for these traits, we also measured pairwise phylogenetic distance of species within floristic regions, calculated rates of speciation, and tested for correlations of speciation rate to tempo of geographical and ecological evolution. Our analyses consistently show that evolutionarily related species tend to be geographically unrelated. Rates of geographical and ecological diversification are closely linked to tempo of speciation, and exploration of geographical place coincides with divergence in ecological niche space. We highlight the benefits of treating geography in a continuous manner, and stress the importance of employing a diverse suite of analytical approaches in testing hypotheses regarding the evolution of range and niche.


Asunto(s)
Carex (Planta)/clasificación , Carex (Planta)/genética , Evolución Molecular , Especiación Genética , Cyperaceae/clasificación , Cyperaceae/genética , Ecosistema , Geografía , América del Norte , Fenotipo , Filogenia , Filogeografía , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...