Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
R Soc Open Sci ; 7(8): 200485, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32968515

RESUMEN

Soil is used for the construction of structures by many animals, at times admixed with endogenous secretions. These additives, along with soil components, are suggested to have a role in biocementation. However, the relative contribution of endogenous and exogenous materials to soil strength has not been adequately established. Termite mounds are earthen structures with exceptional strength and durability including weathering resistance to wind and rain. With in situ and laboratory-based experiments, we demonstrate that the fungus-farming termite Odontotermes obesus which builds soil nest mounds, when given a choice, prefers soil close to its liquid limit for construction. At this moisture content, the soil-water mixture alone even in the absence of termite handling undergoes self-weight consolidation and upon drying attains a monolithic, densely packed structure with compressive strength comparable to the in situ strength of the mound soil; however, the soil-water mixture alone has lower resistance to water erosion than the in situ mound samples, suggesting that termite secretions impart weathering resistance and thereby long-term stability to the mound. Therefore, weathering resistance and compressive strength are conferred by different aspects of termite soil manipulation. Our work provides novel insights into termite mound construction and strength correlates for earthen structures built by animals.

2.
Sci Rep ; 10(1): 13157, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32753655

RESUMEN

Mass-energy transfer across the boundaries of living systems is crucial for the maintenance of homeostasis; however, it is scarcely known how structural strength and integrity is maintained in extended phenotypes while also achieving optimum heat-mass exchange. Here we present data on strength, stability, porosity and permeability of termite mounds of a fungus-farming species, Odontotermes obesus. We demonstrate that the termite mound is a bi-layered structure with a dense, strong core and a porous shell that is constantly remodelled. Its safety factor is extraordinarily high and is orders of magnitude higher than those of human constructions. The porous peripheries are analogous to the mulch layer used in agriculture and help in moisture retention crucial for the survival of fungus gardens, while also allowing adequate wind-induced ventilation of the mounds. We suggest that the architectural solutions offered by these termites have wider implications for natural and industrial building technologies.


Asunto(s)
Isópteros/fisiología , Animales , Hongos/crecimiento & desarrollo , Ventilación
3.
Sci Rep ; 7(1): 4692, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28680035

RESUMEN

Animal constructions such as termite mounds have received scrutiny by architects, structural engineers, soil scientists and behavioural ecologists but their basic building blocks remain uncharacterized and the criteria used for material selection unexplored. By conducting controlled experiments on Odontotermes obesus termites, we characterize the building blocks of termite mounds and determine the key elements defining material choice and usage by these accomplished engineers. Using biocement and a self-organized process, termites fabricate, transport and assemble spherical unitary structures called boluses that have a bimodal size distribution, achieving an optimal packing solution for mound construction. Granular, hydrophilic, osmotically inactive, non-hygroscopic materials with surface roughness, rigidity and containing organic matter are the easiest to handle and are crucial determinants of mass transfer during mound construction. We suggest that these properties, along with optimal moisture availability, are important predictors of the global geographic distribution of termites.


Asunto(s)
Isópteros/fisiología , Animales , Conducta Animal , Suelo , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...