Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(21): e2209639120, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37186844

RESUMEN

Renal medullary carcinoma (RMC) is an aggressive kidney cancer that almost exclusively develops in individuals with sickle cell trait (SCT) and is always characterized by loss of the tumor suppressor SMARCB1. Because renal ischemia induced by red blood cell sickling exacerbates chronic renal medullary hypoxia in vivo, we investigated whether the loss of SMARCB1 confers a survival advantage under the setting of SCT. Hypoxic stress, which naturally occurs within the renal medulla, is elevated under the setting of SCT. Our findings showed that hypoxia-induced SMARCB1 degradation protected renal cells from hypoxic stress. SMARCB1 wild-type renal tumors exhibited lower levels of SMARCB1 and more aggressive growth in mice harboring the SCT mutation in human hemoglobin A (HbA) than in control mice harboring wild-type human HbA. Consistent with established clinical observations, SMARCB1-null renal tumors were refractory to hypoxia-inducing therapeutic inhibition of angiogenesis. Further, reconstitution of SMARCB1 restored renal tumor sensitivity to hypoxic stress in vitro and in vivo. Together, our results demonstrate a physiological role for SMARCB1 degradation in response to hypoxic stress, connect the renal medullary hypoxia induced by SCT with an increased risk of SMARCB1-negative RMC, and shed light into the mechanisms mediating the resistance of SMARCB1-null renal tumors against angiogenesis inhibition therapies.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Rasgo Drepanocítico , Animales , Humanos , Ratones , Carcinoma de Células Renales/patología , Hipoxia/genética , Hipoxia/metabolismo , Riñón/metabolismo , Neoplasias Renales/patología , Rasgo Drepanocítico/genética , Rasgo Drepanocítico/metabolismo , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo
2.
Clin Transl Med ; 13(5): e1267, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37226898

RESUMEN

BACKGROUND: Renal medullary carcinoma (RMC) is a highly aggressive cancer in need of new therapeutic strategies. The neddylation pathway can protect cells from DNA damage induced by the platinum-based chemotherapy used in RMC. We investigated if neddylation inhibition with pevonedistat will synergistically enhance antitumour effects of platinum-based chemotherapy in RMC. METHODS: We evaluated the IC50 concentrations of the neddylation-activating enzyme inhibitor pevonedistat in vitro in RMC cell lines. Bliss synergy scores were calculated using growth inhibition assays following treatment with varying concentrations of pevonedistat and carboplatin. Protein expression was assessed by western blot and immunofluorescence assays. The efficacy of pevonedistat alone or in combination with platinum-based chemotherapy was evaluated in vivo in platinum-naïve and platinum-experienced patient-derived xenograft (PDX) models of RMC. RESULTS: The RMC cell lines demonstrated IC50 concentrations of pevonedistat below the maximum tolerated dose in humans. When combined with carboplatin, pevonedistat demonstrated a significant in vitro synergistic effect. Treatment with carboplatin alone increased nuclear ERCC1 levels used to repair the interstrand crosslinks induced by platinum salts. Conversely, the addition of pevonedistat to carboplatin led to p53 upregulation resulting in FANCD2 suppression and reduced nuclear ERCC1 levels. The addition of pevonedistat to platinum-based chemotherapy significantly inhibited tumour growth in both platinum-naïve and platinum-experienced PDX models of RMC (p < .01). CONCLUSIONS: Our results suggest that pevonedistat synergises with carboplatin to inhibit RMC cell and tumour growth through inhibition of DNA damage repair. These findings support the development of a clinical trial combining pevonedistat with platinum-based chemotherapy for RMC.


Asunto(s)
Carcinoma Medular , Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carboplatino/farmacología , Carboplatino/uso terapéutico , Carcinoma de Células Renales/tratamiento farmacológico , Neoplasias Renales/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...