Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 19(5): e0302935, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38717978

RESUMEN

Introduction and establishment of non-indigenous species (NIS) has been accelerated on a global scale by climate change. NIS Magallana gigas' (formerly Crassostrea gigas') global spread over the past several decades has been linked to warming waters, specifically during summer months, raising the specter of more spread due to predicted warming. We tracked changes in density and size distribution of M. gigas in two southern California, USA bays over the decade spanning 2010-2020 using randomly placed quadrats across multiple intertidal habitats (e.g., cobble, seawalls, riprap) and documented density increases by 2.2 to 32.8 times at 7 of the 8 sites surveyed across the two bays. These increases in density were coincident with 2-4° C increases in median monthly seawater temperature during summer months, consistent with global spread of M. gigas elsewhere. Size frequency distribution data, with all size classes represented across sites, suggest now-regular recruitment of M. gigas. Our data provide a baseline against which to compare future changes in density and abundance of a globally-spread NIS of significant concern.


Asunto(s)
Cambio Climático , Estuarios , Especies Introducidas , California , Animales , Ecosistema , Estaciones del Año , Crassostrea , Temperatura
2.
Sci Total Environ ; 912: 169267, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38092205

RESUMEN

The Olympia oyster, Ostrea lurida, is the target of many restoration projects along estuaries on the North American Pacific coast, while the non-native Pacific oyster, Magallana gigas, dominates oyster aquaculture globally. Both species provide filtration functions that were investigated in three California bays using a whole-habitat, in situ approach, a laboratory particle selection experiment, and a regional physiological comparison. Measurements of chlorophyll α, temperature, salinity, and turbidity upstream and downstream, as well as point samples of seston total particulate matter and organic content to estimate habitat clearance rates (HCR, L hr-1 m-2) were collected. From February 2018 to June 2019, twenty-two trials were conducted across four sites. HCRs were highly variable within and among sites, ranging from site averages of -464 to 166 L hr-1 m-2, and not significantly different among sites, indicating field filtration performance of O. lurida habitat and M. gigas aquaculture is similar. Using a random forest regression, site was the most important predictor of HCR, with a variable importance score of 25.7 % (SD = 4.6 %). O. lurida and M. gigas had significantly different particle size selection preferences, likely affecting the quality of their filtration. This study's findings suggest that restoring O. lurida habitat may provide similar filtration benefits as M. gigas aquaculture, but the unique hydrodynamics and food quality of individual bays, as well as regional differences in filter feeder communities, must be considered in managing oyster habitat for filtration functions.


Asunto(s)
Crassostrea , Aleaciones de Oro , Ostrea , Animales , Estuarios , Tamaño de la Partícula , Ecosistema , América del Norte
3.
PLoS One ; 17(3): e0263998, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35298468

RESUMEN

To conserve coastal foundation species, it is essential to understand patterns of distribution and abundance and how they change over time. We synthesized oyster distribution data across the west coast of North America to develop conservation strategies for the native Olympia oyster (Ostrea lurida), and to characterize populations of the non-native Pacific oyster (Magallana gigas). We designed a user-friendly portal for data entry into ArcGIS Online and collected oyster records from unpublished data submitted by oyster experts and from the published literature. We used the resulting 2,000+ records to examine spatial and temporal patterns and made an interactive web-based map publicly available. Comparing records from pre-2000 vs. post-2000, we found that O. lurida significantly decreased in abundance and distribution, while M. gigas increased significantly. Currently the distribution and abundance of the two species are fairly similar, despite one species being endemic to this region since the Pleistocene, and the other a new introduction. We mapped the networks of sites occupied by oysters based on estimates of larval dispersal distance, and found that these networks were larger in Canada, Washington, and southern California than in other regions. We recommend restoration to enhance O. lurida, particularly within small networks, and to increase abundance where it declined. We also recommend restoring natural biogenic beds on mudflats and sandflats especially in the southern range, where native oysters are currently found most often on riprap and other anthropogenic structures. This project can serve as a model for collaborative mapping projects that inform conservation strategies for imperiled species or habitats.


Asunto(s)
Ostrea , Animales , Canadá , Ecosistema , América del Norte , Washingtón
4.
PLoS One ; 16(10): e0258119, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34618815

RESUMEN

Recent restoration efforts for the native Olympia oyster, Ostrea lurida, are commonly motivated by potential return of oyster-associated ecosystem services, including increased water filtration. The potential impact of such restoration on another species of ecological concern, eelgrass, Zostera marina, is unclear, but has been hypothesized to be positive if oyster filter feeding increases light penetration to eelgrass. For two years after construction of an oyster restoration project, we assessed the response of adjacent eelgrass (impact) compared to control and reference eelgrass beds by monitoring changes in light intensity, eelgrass shoot density, biomass, leaf morphometrics, and epiphyte load. We observed lower light intensity consistently over time, including prior to restoration, near the constructed oyster bed relative to the control and one of the reference locations. We also observed minor variations between control and impact eelgrass morphology and density. However, the changes observed were not outside the range of natural variation expected in this system, based upon comparisons to reference eelgrass beds, nor were they detrimental. This limited impact to eelgrass may be due in part to the incorporation of a buffer distance between the restored oyster bed and the existing eelgrass bed, which may have dampened both positive and negative impacts. These findings provide evidence that Olympia oyster restoration and eelgrass conservation goals can be compatible and occur simultaneously.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Ostrea/crecimiento & desarrollo , Zosteraceae/crecimiento & desarrollo , Animales , Humanos , Agua/química
5.
PLoS One ; 16(6): e0252810, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34153054

RESUMEN

Conservation aquaculture is becoming an important tool to support the recovery of declining marine species and meet human needs. However, this tool comes with risks as well as rewards, which must be assessed to guide aquaculture activities and recovery efforts. Olympia oysters (Ostrea lurida) provide key ecosystem functions and services along the west coast of North America, but populations have declined to the point of local extinction in some estuaries. Here, we present a species-level, range-wide approach to strategically planning the use of aquaculture to promote recovery of Olympia oysters. We identified 12 benefits of culturing Olympia oysters, including identifying climate-resilient phenotypes that add diversity to growers' portfolios. We also identified 11 key risks, including potential negative ecological and genetic consequences associated with the transfer of hatchery-raised oysters into wild populations. Informed by these trade-offs, we identified ten priority estuaries where aquaculture is most likely to benefit Olympia oyster recovery. The two highest scoring estuaries have isolated populations with extreme recruitment limitation-issues that can be addressed via aquaculture if hatchery capacity is expanded in priority areas. By integrating social criteria, we evaluated which project types would likely meet the goals of local stakeholders in each estuary. Community restoration was most broadly suited to the priority areas, with limited commercial aquaculture and no current community harvest of the species, although this is a future stakeholder goal. The framework we developed to evaluate aquaculture as a tool to support species recovery is transferable to other systems and species globally; we provide a guide to prioritizing local knowledge and developing recommendations for implementation by using transparent criteria. Our collaborative process engaging diverse stakeholders including managers, scientists, Indigenous Tribal representatives, and shellfish growers can be used elsewhere to seek win-win opportunities to expand conservation aquaculture where benefits are maximized for both people and imperiled species.


Asunto(s)
Acuicultura/métodos , Conservación de los Recursos Naturales/métodos , Ecosistema , Especies en Peligro de Extinción , Ostrea/fisiología , Animales , Colombia Británica , California , Estuarios , Geografía , Humanos , México , Oregon , Reproducibilidad de los Resultados , Factores de Riesgo
6.
Ecology ; 97(12): 3503-3516, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27912012

RESUMEN

Recruitment of new propagules into a population can be a critical determinant of adult density. We examined recruitment dynamics in the Olympia oyster (Ostrea lurida), a species occurring almost entirely in estuaries. We investigated spatial scales of interannual synchrony across 37 sites in eight estuaries along 2,500 km of Pacific North American coastline, predicting that high vs. low recruitment years would coincide among neighboring estuaries due to shared exposure to regional oceanographic factors. Such synchrony in recruitment has been found for many marine species and some migratory estuarine species, but has never been examined across estuaries in a species that can complete its entire life cycle within the same estuary. To inform ongoing restoration efforts for Olympia oysters, which have declined in abundance in many estuaries, we also investigated predictors of recruitment failure. We found striking contrasts in absolute recruitment rate and frequency of recruitment failure among sites, estuaries, and years. Although we found a positive relationship between upwelling and recruitment, there was little evidence of synchrony in recruitment among estuaries along the coast, and only limited synchrony of sites within estuaries, suggesting recruitment rates are affected more strongly by local dynamics within estuaries than by regional oceanographic factors operating at scales encompassing multiple estuaries. This highlights the importance of local wetland and watershed management for the demography of oysters, and perhaps other species that can complete their entire life cycle within estuaries. Estuaries with more homogeneous environmental conditions had greater synchrony among sites, and this led to the potential for estuary-wide failure when all sites had no recruitment in the same year. Environmental heterogeneity within estuaries may thus buffer against estuary-wide recruitment failure, analogous to the portfolio effect for diversity. Recruitment failure was correlated with lower summer water temperature, higher winter salinity, and shorter residence time: all indicators of stronger marine influence on estuaries. Recruitment failure was also more common in estuaries with limited networks of nearby adult oysters. Large existing oyster networks are thus of high conservation value, while estuaries that lack them would benefit from restoration efforts to increase the extent and connectivity of sites supporting oysters.


Asunto(s)
Ostreidae/fisiología , Distribución Animal , Animales , Canadá , Océano Pacífico , Dinámica Poblacional , Estados Unidos
7.
Proc Biol Sci ; 277(1688): 1685-94, 2010 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-20133354

RESUMEN

Management and conservation can be greatly informed by considering explicitly how environmental factors influence population genetic structure. Using simulated larval dispersal estimates based on ocean current observations, we demonstrate how explicit consideration of frequency of exchange of larvae among sites via ocean advection can fundamentally change the interpretation of empirical population genetic structuring as compared with conventional spatial genetic analyses. Both frequency of larval exchange and empirical genetic difference were uncorrelated with Euclidean distance between sites. When transformed into relative oceanographic distances and integrated into a genetic isolation-by-distance framework, however, the frequency of larval exchange explained nearly 50 per cent of the variance in empirical genetic differences among sites over scales of tens of kilometres. Explanatory power was strongest when we considered effects of multiple generations of larval dispersal via intermediary locations on the long-term probability of exchange between sites. Our results uncover meaningful spatial patterning to population genetic structuring that corresponds with ocean circulation. This study advances our ability to interpret population structure from complex genetic data characteristic of high gene flow species, validates recent advances in oceanographic approaches for assessing larval dispersal and represents a novel approach to characterize population connectivity at small spatial scales germane to conservation and fisheries management.


Asunto(s)
Genética de Población , Biología Marina , Caracoles , Movimientos del Agua , Animales , Ecosistema , Larva/crecimiento & desarrollo , Oceanografía , Océanos y Mares , Dinámica Poblacional , Caracoles/genética , Caracoles/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...