Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 290(6): 3654-65, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25533462

RESUMEN

Previous studies proposed a role for the Na/K-ATPase in unconventional secretion of fibroblast growth factor 2 (FGF2). This conclusion was based upon pharmacological inhibition of FGF2 secretion in the presence of ouabain. However, neither independent experimental evidence nor a potential mechanism was provided. Based upon an unbiased RNAi screen, we now report the identification of ATP1A1, the α1-chain of the Na/K-ATPase, as a factor required for efficient secretion of FGF2. As opposed to ATP1A1, down-regulation of the ß1- and ß3-chains (ATP1B1 and ATP1B3) of the Na/K-ATPase did not affect FGF2 secretion, suggesting that they are dispensable for this process. These findings indicate that it is not the membrane potential-generating function of the Na/K-ATPase complex but rather a so far unidentified role of potentially unassembled α1-chains that is critical for unconventional secretion of FGF2. Consistently, in the absence of ß-chains, we found a direct interaction between the cytoplasmic domain of ATP1A1 and FGF2 with submicromolar affinity. Based upon these observations, we propose that ATP1A1 is a recruitment factor for FGF2 at the inner leaflet of plasma membranes that may control phosphatidylinositol 4,5-bisphosphate-dependent membrane translocation as part of the unconventional secretory pathway of FGF2.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/metabolismo , Vías Secretoras , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Células HeLa , Humanos , Unión Proteica , Estructura Terciaria de Proteína , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/genética
2.
FEBS Lett ; 587(9): 1411-7, 2013 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-23523923

RESUMEN

Influenza A Neuraminidase is essential for virus release from the cell surface of host cells. Given differential structures of the N-terminal sequences including the transmembrane domains of neuraminidase subtypes, we investigated their contribution to transport and localization of subtypes N1, N2 and N8 to the plasma membrane. We generated consensus sequences from all protein entries available for these subtypes. We found that 40N-terminal the forty N-terminal amino acids are sufficient to confer plasma membrane localization of fusion proteins, albeit with different efficiencies. Strikingly, subtle differences in the primary structure of the part of the transmembrane domain that resides in the exoplasmic leaflet of the membrane have a major impact on transport efficiency, providing a potential target for the inhibition of virus release.


Asunto(s)
Membrana Celular/metabolismo , Virus de la Influenza A/enzimología , Neuraminidasa/química , Neuraminidasa/metabolismo , Señales de Clasificación de Proteína , Secuencia de Aminoácidos , Secuencia de Consenso , Células HeLa , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Transporte de Proteínas
3.
J Biol Chem ; 287(33): 27659-69, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-22730382

RESUMEN

Fibroblast growth factor 2 (FGF2) is a critical mitogen with a central role in specific steps of tumor-induced angiogenesis. It is known to be secreted by unconventional means bypassing the endoplasmic reticulum/Golgi-dependent secretory pathway. However, the mechanism of FGF2 membrane translocation into the extracellular space has remained elusive. Here, we show that phosphatidylinositol 4,5-bisphosphate-dependent membrane recruitment causes FGF2 to oligomerize, which in turn triggers the formation of a lipidic membrane pore with a putative toroidal structure. This process is strongly up-regulated by tyrosine phosphorylation of FGF2. Our findings explain key requirements of FGF2 secretion from living cells and suggest a novel self-sustained mechanism of protein translocation across membranes with a lipidic membrane pore being a transient translocation intermediate.


Asunto(s)
Membrana Celular/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Multimerización de Proteína/fisiología , Membrana Celular/química , Membrana Celular/genética , Factor 2 de Crecimiento de Fibroblastos/química , Factor 2 de Crecimiento de Fibroblastos/genética , Humanos , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/genética , Fosforilación/fisiología , Transporte de Proteínas/fisiología
4.
PLoS Pathog ; 5(3): e1000322, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19283086

RESUMEN

A key process in the lifecycle of the malaria parasite Plasmodium falciparum is the fast invasion of human erythrocytes. Entry into the host cell requires the apical membrane antigen 1 (AMA-1), a type I transmembrane protein located in the micronemes of the merozoite. Although AMA-1 is evolving into the leading blood-stage malaria vaccine candidate, its precise role in invasion is still unclear. We investigate AMA-1 function using live video microscopy in the absence and presence of an AMA-1 inhibitory peptide. This data reveals a crucial function of AMA-1 during the primary contact period upstream of the entry process at around the time of moving junction formation. We generate a Plasmodium falciparum cell line that expresses a functional GFP-tagged AMA-1. This allows the visualization of the dynamics of AMA-1 in live parasites. We functionally validate the ectopically expressed AMA-1 by establishing a complementation assay based on strain-specific inhibition. This method provides the basis for the functional analysis of essential genes that are refractory to any genetic manipulation. Using the complementation assay, we show that the cytoplasmic domain of AMA-1 is not required for correct trafficking and surface translocation but is essential for AMA-1 function. Although this function can be mimicked by the highly conserved cytoplasmic domains of P. vivax and P. berghei, the exchange with the heterologous domain of the microneme protein EBA-175 or the rhoptry protein Rh2b leads to a loss of function. We identify several residues in the cytoplasmic tail that are essential for AMA-1 function. We validate this data using additional transgenic parasite lines expressing AMA-1 mutants with TY1 epitopes. We show that the cytoplasmic domain of AMA-1 is phosphorylated. Mutational analysis suggests an important role for the phosphorylation in the invasion process, which might translate into novel therapeutic strategies.


Asunto(s)
Antígenos de Protozoos/química , Antígenos de Protozoos/metabolismo , Vacunas contra la Malaria/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Animales , Antígenos de Protozoos/genética , Western Blotting , Citoplasma/metabolismo , Técnica del Anticuerpo Fluorescente , Humanos , Immunoblotting , Inmunoprecipitación , Vacunas contra la Malaria/genética , Proteínas de la Membrana/genética , Microscopía Confocal , Datos de Secuencia Molecular , Fosforilación , Reacción en Cadena de la Polimerasa , Proteínas Protozoarias/genética , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...