Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Respir Res ; 25(1): 102, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38419061

RESUMEN

Seasonally circulating viruses, such as Influenza, as well as newly emerging viruses and variants thereof, and waning immunity urge the need for safe, easy-to-use and inexpensive drugs to protect from these challenges. To prevent transmission of these viruses and subsequent excessive inflammatory reactions on mucous membranes, we tested the efficacy of the natural essence P80 as spray and in form of lozenges against respiratory infections caused by SARS-CoV-2 variants of concern (VoCs), influenza A (H3N2) and influenza B (Victoria). P80 natural essence, a Dimocarpus longan extract, shielded highly differentiated human airway epithelia from SARS-CoV-2 wildtype and Omicron variant as well as Influenza A and B infection and dampened inflammation by down-modulating pro-inflammatory cytokine and anaphylatoxin secretion. A single application of P80 natural essence spray maintained tissue integrity long-term. This also significantly reduced the release of infectious viral particles and the secretion of IP10, MCP1, RANTES and C3a, all of which mediate the migration of immune cells to the sites of infection. Even P80 lozenges dissolved in distilled water or non-neutralizing saliva efficiently prevented SARS-CoV-2 and Influenza-induced tissue destruction. Consequently, our in vitro data suggest that P80 natural essence can act as antiviral prophylactic, both in form of nasal or oral spray and in form of lozenges, independent of circulating respiratory challenges.


Asunto(s)
COVID-19 , Gripe Humana , Humanos , Gripe Humana/prevención & control , Subtipo H3N2 del Virus de la Influenza A , SARS-CoV-2 , Inflamación
2.
Front Immunol ; 14: 1258268, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37915577

RESUMEN

Introduction: To explore whether the reported lower pathogenicity in infected individuals of variant of concern (VoC) Omicron and its current subvariants compared to VoC Delta may be related to fundamental differences in the initial virus-tissue interaction, we assessed their ability to penetrate, replicate and cause damage in a human 3D respiratory model. Methods: For this, we used TEER measurements, real-time PCR, LDH, cytokine and complex confocal imaging analyses. Results and discussion: We observed that Delta readily penetrated deep into the respiratory epithelium and this was associated with major tissue destruction, high LDH activity, high viral loads and pronounced innate immune activation as observed by intrinsic C3 activation and IL-6 release at infection sites. In contrast, Omicron subvariants BA.5, BQ.1.1 and BF7 remained superficially in the mucosal layer resulting merely in outward-directed destruction of cells, maintenance of epithelial integrity, minimal LDH activity and low basolateral release of virus at infection sites, as well as significantly smaller areas of complement activation and lower IL-6 secretion. Interestingly, also within Omicron subvariants differences were observed with newer Omicron subvariants BQ.1.1 and BF.7 illustrating significantly reduced viral loads, IL-6 release and LDH activity compared to BA.5. Our data indicate that earliest interaction events after SARS-CoV-2 transmission may have a role in shaping disease severity.


Asunto(s)
Interleucina-6 , Insuficiencia Respiratoria , Humanos , Epitelio , Mucosa Respiratoria , Activación de Complemento
3.
Microbiol Spectr ; : e0179323, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37551989

RESUMEN

Currently, SARS-CoV-2 Omicron BA.5 subvariants BF.7 and BQ.1.1 are rapidly emerging worldwide. To evaluate the SARS-CoV-2-neutralizing capacity of sera and saliva from triple vaccinated individuals, either boosted with an adapted bivalent COVID-19 vaccine or recovered from BA.4/BA.5 infection, we analyzed the sensitivity of replication-competent SARS-CoV-2 Omicron subvariants BA.4/5, BQ.1.1 and BF.7 to neutralization. Analysis of SARS-CoV-2-specific IgGs and IgAs showed increased serum IgG titers in the vaccinated group, while the serum and salivary IgA levels were comparable. Similar and efficient serum neutralization against the ancestral strain of SARS-CoV-2 and Omicron BA.4/BA.5 was detected in both cohorts, but critically reduced for BQ.1.1 and BF.7. In contrast, salivary neutralization against BA.4/BA.5 was increased in the convalescent compared to the vaccinated group, while salivary neutralizing capacity against BQ.1.1 and BF.7 was comparable in these groups. Further, personalized protective effects studied in a human 3D respiratory model revealed the importance of salivary protection against different Omicron subvariants. IMPORTANCE In BA.4/BA.5-convalescent versus vaccinated groups, salivary neutralization capacity increased against SARS-CoV-2 Omicron BA.4/BA.5. In contrast, it neutralized novel Omicron subvariants BQ.1.1 and BF.7 similarly. Salivary protection against various Omicron subvariants was even more evident when tested in a personalized approach using highly differentiated respiratory human 3D models.

4.
Antiviral Res ; 213: 105581, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36965526

RESUMEN

The identification of the SARS-CoV-2 Omicron variants BA.4/BA.5, BF.7 and BQ.1.1 immediately raised concerns regarding the efficacy of currently used monoclonal antibody therapies. Here we examined the activity of monoclonal antibody therapies and antiviral drugs against clinical specimens for SARS-CoV-2 Omicron BA.4/BA.5, BF.7 and BQ.1.1 employing an immunofluorescence neutralization assay. Further we explored treatment of BA.4/BA.5 infections with efficient antiviral drugs and monoclonal antibodies in a 3D model of primary human bronchial epithelial cells. We found that the antiviral drugs Molnupiravir, Nirmatrelvir and Remdesivir efficiently inhibit BA.4/BA.5, BF.7 and BQ.1.1 replication. In contrast, only the monoclonal antibody Cilgavimab exerted an inhibitory effect, while Tixagevimab, Regdanvimab and Sotrovimab lost their efficacy against BA.4/BA.5. We found that only the prophylactic treatment with Cilgavimab impacted on tissue inflammation by reducing intracellular complement component 3 (C3) activation following BA.4/BA.5 infection in primary human airway epithelial grown in air-liquid-interphase, which was not the case when using antiviral drugs or Cilgavimab after establishment of infection. Of note, all tested monoclonal antibodies had no neutralizing activity during infection by BF.7 and BQ.1.1 variants. Our results suggest that despite a marked reduction of viral replication, potent antiviral drugs fail to reduce tissue levels of inflammatory compounds such as C3, which can still result in tissue destruction.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Anticuerpos Monoclonales , Anticuerpos Neutralizantes/farmacología , Antivirales/farmacología , Anticuerpos Antivirales
5.
Respir Res ; 24(1): 88, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949547

RESUMEN

New SARS-CoV-2 variants of concern (VOCs) and waning immunity illustrate that quick and easy-to-use agents are needed to prevent infection. To protect from viral transmission and subsequent inflammatory reactions, we applied GlyperA™, a novel antimicrobial formulation that can be used as mouth gargling solution or as nasal spray, to highly differentiated human airway epithelia prior infection with Omicron VOCs BA.1 and BA.2. This formulation fully protected polarized human epithelium cultured in air-liquid interphase (ALI) from SARS-CoV-2-mediated tissue destruction and infection upon single application up to two days post infection. Moreover, inflammatory reactions induced by the Omicron VOCs were significantly lowered in tissue equivalents either pre-treated with the GlyperA™ solution, or even when added simultaneously. Thus, the GlyperA™ formulation significantly shielded epithelial integrity, successfully blocked infection with Omicron and release of viral particles, and decreased intracellular complement C3 activation within human airway epithelial cell cultures. Crucially, our in vitro data imply that GlyperA™ may be a simple tool to prevent from SARS-CoV-2 infection independent on the circulating variant via both, mouth and nose.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Epitelio , Nariz , Inflamación
6.
Eur J Immunol ; 53(11): e2249923, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36623939

RESUMEN

This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. Here, we provide detailed procedures for a variety of multiparameter fluorescence microscopy imaging methods to explore the spatial organization of DC in tissues and to dissect how DC migrate, communicate, and mediate their multiple functional roles in immunity in a variety of tissue settings. The protocols presented here entail approaches to study DC dynamics and T cell cross-talk by intravital microscopy, large-scale visualization, identification, and quantitative analysis of DC subsets and their functions by multiparameter fluorescence microscopy of fixed tissue sections, and an approach to study DC interactions with tissue cells in a 3D cell culture model. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.


Asunto(s)
Células Dendríticas , Linfocitos T , Humanos , Microscopía Fluorescente/métodos
8.
mBio ; 13(6): e0255822, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36326251

RESUMEN

New SARS-CoV-2 variants of concern and waning immunity demonstrate the need for a quick and simple prophylactic agent to prevent infection. Low molecular weight heparins (LMWH) are potent inhibitors of SARS-CoV-2 binding and infection in vitro. The airways are a major route for infection and therefore inhaled LMWH could be a prophylactic treatment against SARS-CoV-2. We investigated the efficacy of in vivo inhalation of LMWH in humans to prevent SARS-CoV-2 attachment to nasal epithelial cells in a single-center, open-label intervention study. Volunteers received enoxaparin in the right and a placebo (NaCl 0.9%) in the left nostril using a nebulizer. After application, nasal epithelial cells were retrieved with a brush for ex-vivo exposure to either SARS-CoV-2 pseudovirus or an authentic SARS-CoV-2 isolate and virus attachment as determined. LMWH inhalation significantly reduced attachment of SARS-CoV-2 pseudovirus as well as authentic SARS-CoV-2 to human nasal cells. Moreover, in vivo inhalation was as efficient as in vitro LMWH application. Cell phenotyping revealed no differences between placebo and treatment groups and no adverse events were observed in the study participants. Our data strongly suggested that inhalation of LMWH was effective to prevent SARS-CoV-2 attachment and subsequent infection. LMWH is ubiquitously available, affordable, and easy to apply, making them suitable candidates for prophylactic treatment against SARS-CoV-2. IMPORTANCE New SARS-CoV-2 variants of concern and waning immunity demonstrate the need for a quick and simple agent to prevent infection. Low molecular weight heparins (LMWH) have been shown to inhibit SARS-CoV-2 in experimental settings. The airways are a major route for SARS-CoV-2 infection and inhaled LMWH could be a prophylactic treatment. We investigated the efficacy of inhalation of the LMWH enoxaparin in humans to prevent SARS-CoV-2 attachment because this is a prerequisite for infection. Volunteers received enoxaparin in the right and a placebo in the left nostril using a nebulizer. Subsequently, nasal epithelial cells were retrieved with a brush and exposed to SARS-CoV-2. LMWH inhalation significantly reduced the binding of SARS-Cov-2 to human nasal cells. Cell phenotyping revealed no differences between placebo and treatment groups and no adverse events were observed in the participants. Our data indicated that LMWH can be used to block SARS-CoV-2 attachment to nasal cells. LMWH was ubiquitously available, affordable, and easily applicable, making them excellent candidates for prophylactic treatment against SARS-CoV-2.


Asunto(s)
COVID-19 , Heparina de Bajo-Peso-Molecular , Humanos , Heparina de Bajo-Peso-Molecular/efectos adversos , SARS-CoV-2 , Enoxaparina/uso terapéutico
9.
Respir Res ; 23(1): 300, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316674

RESUMEN

Vaccines against SARS-CoV-2 protect from critical or severe pathogenesis also against new variants of concern (VOCs) such as BA.4 and BA.5, but immediate interventions to avoid viral transmission and subsequent inflammatory reactions are needed. Here we applied the ColdZyme® medical device mouth spray to fully differentiated, polarized human epithelium cultured at an air-liquid interphase (ALI). We found using VOCs BA.1 and BA.4/5 that this device effectively blocked respiratory tissue infection. While infection with these VOCs resulted in intracellular complement activation, thus enhanced inflammation, and drop of transepithelial resistance, these phenomena were prevented by a single administration of this medical device. Thus, ColdZyme® mouth spray significantly shields epithelial integrity, hinders virus infection and blocks in a secondary effect intrinsic complement activation within airway cultures also in terms of the highly contagious VOCs BA.4/5. Crucially, our in vitro data suggest that ColdZyme® mouth spray may have an impact to protect against SARS-CoV-2 transmission, also in case of the Omicron BA.1, BA.4 and BA.5 variants.


Asunto(s)
COVID-19 , Infecciones del Sistema Respiratorio , Humanos , Células Epiteliales , Vacunas contra la COVID-19 , SARS-CoV-2 , Epitelio , Infecciones del Sistema Respiratorio/prevención & control
10.
Front Med (Lausanne) ; 9: 1005589, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36250084

RESUMEN

Objectives: The identification of the SARS-CoV-2 Omicron variants BA.1 and BA.2 immediately raised concerns about the efficacy of currently used monoclonal antibody therapies. Here, we analyzed the activity of Sotrovimab and Regdanvimab, which are used in clinics for treatment of moderate to severe SARS-CoV-2 infections, and Cilgavimab/Tixagevimab, which are approved for prophylactic use, against BA.1 and BA.2 in a 3D model of primary human bronchial epithelial cells. Methods: Primary human airway epithelia (HAE) cells in a 3D tissue model were infected with clinical isolates of SARS-CoV-2 Delta, BA.1 or BA.2. To mimic the therapeutic use of mAbs, we added Regdanvimab, Sotrovimab or Cilgavimab/Tixagevimab 6 h after infection. In order to mirror the prophylactic use of Cilgavimab/Tixagevimab, we added this compound 6 h prior to infection to the fully differentiated, pseudostratified epithelia cultured in air-liquid interphase (ALI). Results: We observed that Sotrovimab, but not Regdanvimab, is active against BA.1; however, both antibodies lose their efficacy against BA.2. In contrast, we found that BA.2 was sensitive to neutralization by the approved prophylactic administration and the therapeutic use, which is not yet permitted, of Cilgavimab/Tixagevimab. Conclusion: Importantly, while the use of Tixagevimab/Cilgavimab is effective in controlling BA.2 but not BA.1 infection, monoclonal antibodies (mAbs) with efficacy against BA.1 are ineffective to reduce BA.2 virus replication in a human lung model. Our data may have implications on the variant specific clinical use of monoclonal antibodies.

11.
Vaccines (Basel) ; 9(9)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34579213

RESUMEN

Dendritic cells (DCs), as well as complement, play a major role during human immunodeficiency virus 1 (HIV-1) entry and infection at mucosal sites. Together, DCs and complement are key points for understanding host defence against HIV-1 infection and for studying the impact of new drugs on the regulation of innate host-pathogen interactions and adaptive immunity. For this, we evaluated the antiviral effect of the P80 natural essence (Longan extract) on interactions of non- and complement-opsonized HIV-1 with DCs. In viability assays, we first illustrated the effects of P80 natural essence on DC function. We found that P80 concentrations above 1.5% caused increased cell death, while at concentrations between 0.5% and 1% the compound exerted efficient antiviral effects in DCs and illustrated an adjuvant effect regarding DC activation. DC maturation, as well as co-stimulatory capacity, were significantly improved by P80 natural essence via p38 MAPK phosphorylation in presence of the viral challenge independent of the opsonization pattern. These findings might be exploited for future therapeutic options to target DC subsets directly at mucosal sites by P80 natural essence and to block entry of both, non- and complement-opsonized HIV-1.

12.
Front Immunol ; 12: 684014, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34194438

RESUMEN

T cells play a fundamental role in the early control and clearance of many viral infections of the respiratory system. In SARS-CoV-2-infected individuals, lymphopenia with drastically reduced CD4+ and CD8+ T cells correlates with Coronavirus disease 2019 (COVID-19)-associated disease severity and mortality. In this study, we characterized cellular and humoral immune responses induced in patients with mild, severe and critical COVID-19. Peripheral blood mononuclear cells of 37 patients with mild, severe and critical COVID-19 and 10 healthy individuals were analyzed by IFNγ ELISpot and multi-color flow cytometry upon stimulation with peptide pools covering complete immunodominant SARS-CoV-2 matrix, nucleocapsid and spike proteins. In addition SARS-CoV-2 antibody levels, neutralization abilities and anaphylatoxin levels were evaluated by various commercially available ELISA platforms. Our data clearly demonstrates a significantly stronger induction of SARS-CoV-2 specific CD8+ T lymphocytes and higher IFNγ production in patients with mild compared to patients with severe or critical COVID-19. In all patients SARS-CoV-2-specific antibodies with similar neutralizing activity were detected, but highest titers of total IgGs were observed in critical patients. Finally, elevated anaphylatoxin C3a and C5a levels were identified in severe and critical COVID-19 patients probably caused by aberrant immune complex formation due to elevated antibody titers in these patients. Crucially, we provide a full picture of cellular and humoral immune responses of COVID-19 patients and prove that robust polyfunctional CD8+ T cell responses concomitant with low anaphylatoxin levels correlate with mild infections. In addition, our data indicates that high SARS-CoV-2 antibody titers are associated with severe disease progression.


Asunto(s)
Anafilatoxinas/metabolismo , Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , SARS-CoV-2/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/fisiopatología , Progresión de la Enfermedad , Ensayo de Immunospot Ligado a Enzimas , Femenino , Citometría de Flujo , Humanos , Inmunidad Humoral , Interferón gamma/sangre , Masculino , Persona de Mediana Edad , Gravedad del Paciente
13.
J Allergy Clin Immunol ; 147(6): 2083-2097.e6, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33852936

RESUMEN

BACKGROUND: Excessive inflammation triggered by a hitherto undescribed mechanism is a hallmark of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and is associated with enhanced pathogenicity and mortality. OBJECTIVE: Complement hyperactivation promotes lung injury and was observed in patients suffering from Middle East respiratory syndrome-related coronavirus, SARS-CoV-1, and SARS-CoV-2 infections. Therefore, we investigated the very first interactions of primary human airway epithelial cells on exposure to SARS-CoV-2 in terms of complement component 3 (C3)-mediated effects. METHODS: For this, we used highly differentiated primary human 3-dimensional tissue models infected with SARS-CoV-2 patient isolates. On infection, viral load, viral infectivity, intracellular complement activation, inflammatory mechanisms, and tissue destruction were analyzed by real-time RT-PCR, high content screening, plaque assays, luminex analyses, and transepithelial electrical resistance measurements. RESULTS: Here, we show that primary normal human bronchial and small airway epithelial cells respond to SARS-CoV-2 infection by an inflated local C3 mobilization. SARS-CoV-2 infection resulted in exaggerated intracellular complement activation and destruction of the epithelial integrity in monolayer cultures of primary human airway cells and highly differentiated, pseudostratified, mucus-producing, ciliated respiratory tissue models. SARS-CoV-2-infected 3-dimensional cultures secreted significantly higher levels of C3a and the proinflammatory cytokines IL-6, monocyte chemoattractant protein 1, IL-1α, and RANTES. CONCLUSIONS: Crucially, we illustrate here for the first time that targeting the anaphylotoxin receptors C3a receptor and C5a receptor in nonimmune respiratory cells can prevent intrinsic lung inflammation and tissue damage. This opens up the exciting possibility in the treatment of COVID-19.


Asunto(s)
Bronquios/inmunología , COVID-19/inmunología , Activación de Complemento , Células Epiteliales/inmunología , Receptor de Anafilatoxina C5a/inmunología , Mucosa Respiratoria/inmunología , SARS-CoV-2/inmunología , Bronquios/patología , Bronquios/virología , COVID-19/patología , COVID-19/virología , Línea Celular , Complemento C3/inmunología , Citocinas/inmunología , Células Epiteliales/patología , Células Epiteliales/virología , Humanos , Inflamación/inmunología , Inflamación/patología , Mucosa Respiratoria/patología , Mucosa Respiratoria/virología
14.
J Fungi (Basel) ; 7(3)2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-33803702

RESUMEN

Lung immunity and susceptibility to infections is subject to interactions between the epithelial layer and immune cells residing in the pulmonary space. Aspergillus (A.) fumigatus, the most prevalent pathogenic fungus, affects both upper and lower respiratory tracts of immunocompromised hosts. Several reports implicate corticosteroids as a major risk factor due to their anti-inflammatory and immunosuppressive effects, which are exacerbated by long-term treatment regimens. Here we demonstrate for the first time the influence of dexamethasone when it comes to germination and hyphae formation of A. fumigatus in the presence of macrophages within a highly differentiated air-liquid interphase (ALI) epithelial/immune lung model. We illustrate suppressed mucus production within the highly differentiated 3D respiratory model as well as significantly decreased cilia beat frequencies by dexamethasone treatment. This goes along with corticosteroid-mediated macrophage M2 polarization within the epithelial/immune microenvironment. Therefore, we here showed that corticosteroids promote enhanced fungal growth and invasion A. fumigatus by creating a suppressive environment affecting both epithelial as well as immune cells.

15.
J Fungi (Basel) ; 7(2)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498318

RESUMEN

Since long-term corticosteroid treatment is associated with emerging opportunistic fungal infections causing high morbidity and mortality in immune-suppressed individuals, here we characterized the impact of dexamethasone (Dex) treatment on Aspergillus fumigatus-related immune modulation. We found by high content screening and flow cytometric analyses that during monocyte-to-macrophage differentiation, as little as 0.1 µg/mL Dex resulted in a shift in macrophage polarization from M1 to M2-like macrophages. This macrophage repolarization mediated via Dex was characterized by significant upregulation of the M2 marker CD163 and downmodulation of M1 markers CD40 and CD86 as well as changes in phenotypic properties and adherence. These Dex-mediated phenotypic alterations were furthermore associated with a metabolic switch in macrophages orchestrated via PKM2. Such treated macrophages lost their ability to prevent Aspergillus fumigatus germination, which was correlated with accelerated fungal growth, destruction of macrophages, and induction of an anti-inflammatory cytokine profile. Taken together, repolarization of macrophages following corticosteroid treatment and concomitant switch to an anti-inflammatory phenotype might play a prominent role in triggering invasive aspergillosis (IA) due to suppression of innate immunological responses necessary to combat extensive fungal outgrowth.

16.
J Invest Dermatol ; 141(1): 84-94.e6, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32522485

RESUMEN

Langerhans cells (LCs) in the skin are a first line of defense against pathogens but also play an essential role in skin homeostasis. Their exclusive expression of the C-type lectin receptor Langerin makes them prominent candidates for immunotherapy. For vaccine testing, an easily accessible cell platform would be desirable as an alternative to the time-consuming purification of LCs from human skin. Here, we present such a model and demonstrate that monocytes in the presence of GM-CSF, TGF-ß1, and the Notch ligand DLL4 differentiate within 3 days into CD1a+Langerin+cells containing Birbeck granules. RNA sequencing of these monocyte-derived LCs (moLCs) confirmed gene expression of LC-related molecules, pattern recognition receptors, and enhanced expression of genes involved in the antigen-presenting machinery. On the protein level, moLCs showed low expression of costimulatory molecules but prominent expression of C-type lectin receptors. MoLCs can be matured, secrete IL-12p70 and TNF-α, and stimulate proliferation and cytokine production in allogeneic CD4+ and CD8+ T cells. In regard to vaccine testing, a recently characterized glycomimetic Langerin ligand conjugated to liposomes demonstrated specific and fast internalization into moLCs. Hence, these short-term in vitro‒generated moLCs represent an interesting tool to screen LC-based vaccines in the future.


Asunto(s)
Células Dendríticas/inmunología , Células de Langerhans/inmunología , Activación de Linfocitos/inmunología , Monocitos/inmunología , Piel/inmunología , Diferenciación Celular/inmunología , Células Cultivadas , Células Dendríticas/patología , Humanos , Células de Langerhans/patología , Fenotipo , Piel/patología
17.
Cells ; 8(10)2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31640299

RESUMEN

Polarized growth of human-derived respiratory epithelial cells on hydrogel-coated filters offers big advantages concerning detailed experiments with respect to drug screening or host pathogen interactions. Different microscopic approaches, such as confocal analyses and high content screening, help to examine such 3D respiratory samples, resulting in high-resolution pictures and enabling quantitative analyses of high cell numbers. A major problem employing these techniques relates to single-use instead of multiple-use of Transwell filters and difficulties in the digestion of collagen if subsequent analyses are needed. Up to date, cells are seeded in collagen-based matrices to the inner field of Transwell inserts, which makes it impossible to image due to the design of the inserts and hard to perform other analyses since digestion of the collagen matrix also affects Transwell grown cells. To overcome these problems, we optimized culturing conditions for monitoring cell differentiation or repeated dose experiments over a long time period. For this, cells are seeded upside-down to the bottom side of filters within an animal-free cellulose hydrogel. These cells were then grown inverted under static conditions and were differentiated in air-liquid interphase (ALI). Full differentiation of goblet (Normal Human Bronchial Epithelial (NHBE))/Club (small airway epithelia (SAE)) cells and ciliated cells was detected after 12 days in ALI. Inverted cell cultures could then be used for 'follow-up' live cell imaging experiments, as well as, flow-cytometric analyses due to easy digestion of the cellulose compared to classical collagen matrices. Additionally, this culture technique also enables easy addition of immune cells, such as dendritic cells (DCs), macrophages, neutrophils, T or B cells alone or in combination, to the inner field of the Transwell to monitor immune cell behavior after repeated respiratory challenge. Our detailed protocol offers the possibility of culturing human primary polarized cells into a fully differentiated, thick epithelium without any animal components over >700 days. Furthermore, this animal-free, inverted system allows investigation of the same inserts, because the complete Transwell can be readily transferred to glass-bottom dishes for live cell imaging analyses and then returned to its original plate for further cultivation.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Celulosa , Células Dendríticas/citología , Células Epiteliales/citología , Humanos , Macrófagos/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...