Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 319-323, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30440402

RESUMEN

High false alarm rate in intensive care units (ICUs) has been identified as one of the most critical medical challenges in recent years. This often results in overwhelming the clinical staff by numerous false or unurgent alarms and decreasing the quality of care through enhancing the probability of missing true alarms as well as causing delirium, stress, sleep deprivation and depressed immune systems for patients. One major cause of false alarms in clinical practice is that the collected signals from different devices are processed individually to trigger an alarm, while there exists a considerable chance that the signal collected from one device is corrupted by noise or motion artifacts. In this paper, we propose a low-computational complexity yet accurate game-theoretic feature selection method which is based on a genetic algorithm that identifies the most informative biomarkers across the signals collected from various monitoring devices and can considerably reduce the rate of false alarms 1.


Asunto(s)
Unidades de Cuidados Intensivos , Algoritmos , Cuidados Críticos , Electrocardiografía , Reacciones Falso Positivas , Humanos , Monitoreo Fisiológico
2.
Sensors (Basel) ; 14(6): 9669-91, 2014 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-24887043

RESUMEN

The use of global navigation satellite system (GNSS) antenna arrays for applications such as interference counter-measure, attitude determination and signal-to-noise ratio (SNR) enhancement is attracting significant attention. However, precise antenna array calibration remains a major challenge. This paper proposes a new method for calibrating a GNSS antenna array using live signals and an inertial measurement unit (IMU). Moreover, a second method that employs the calibration results for the estimation of steering vectors is also proposed. These two methods are applied to the receiver in two modes, namely calibration and operation. In the calibration mode, a two-stage optimization for precise calibration is used; in the first stage, constant uncertainties are estimated while in the second stage, the dependency of each antenna element gain and phase patterns to the received signal direction of arrival (DOA) is considered for refined calibration. In the operation mode, a low-complexity iterative and fast-converging method is applied to estimate the satellite signal steering vectors using the calibration results. This makes the technique suitable for real-time applications employing a precisely calibrated antenna array. The proposed calibration method is applied to GPS signals to verify its applicability and assess its performance. Furthermore, the data set is used to evaluate the proposed iterative method in the receiver operation mode for two different applications, namely attitude determination and SNR enhancement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...