Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Ann Allergy Asthma Immunol ; 130(2): 245-253.e9, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36280100

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can progress into a severe form of acute lung injury. The cosignaling receptor cluster of differentiation 48 (CD48) exists in membrane-bound (mCD48) and soluble (sCD48) forms and has been reported to be implicated in antiviral immunity and dysregulated in several inflammatory conditions. Therefore, CD48 dysregulation may be a putative feature in COVID-19-associated inflammation that deserves consideration. OBJECTIVE: To analyze CD48 expression in lung autopsies and peripheral blood leukocytes and sera of patients with COVID-19. The expression of the CD48 ligand 2B4 on the membrane of peripheral blood leukocytes was also assessed. METHODS: Twenty-eight lung tissue samples obtained from COVID-19 autopsies were assessed for CD48 expression using gene expression profiling immunohistochemistry (HTG autoimmune panel). Peripheral whole blood was collected from 111 patients with COVID-19, and the expression of mCD48 and of membrane-bound 2B4 was analyzed by flow cytometry. Serum levels of sCD48 were assessed by enzyme-linked immunosorbent assay. RESULTS: Lung tissue of patients with COVID-19 showed increased CD48 messenger RNA expression and infiltration of CD48+ lymphocytes. In the peripheral blood, mCD48 was considerably increased on all evaluated cell types. In addition, sCD48 levels were significantly higher in patients with COVID-19, independently of disease severity. CONCLUSION: Considering the changes of mCD48 and sCD48, a role for CD48 in COVID-19 can be assumed and needs to be further investigated.


Asunto(s)
COVID-19 , Receptores Inmunológicos , Humanos , Antígeno CD48/metabolismo , SARS-CoV-2 , Inflamación
3.
Front Immunol ; 13: 1041660, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389786

RESUMEN

Eosinophils are multifunctional, evolutionary conserved leukocytes that are involved in a plethora of responses ranging from regulation of tissue homeostasis, host defense and cancer. Although eosinophils have been studied mostly in the context of Type 2 inflammatory responses, it is now evident that they participate in Type 1 inflammatory responses and can respond to Type 1 cytokines such as IFN-γ. Notably, both Type 1- and Type 2 inflammatory environments are characterized by tissue damage and cell death. Collectively, this raises the possibility that eosinophils can interact with apoptotic cells, which can alter eosinophil activation in the inflammatory milieu. Herein, we demonstrate that eosinophils can bind and engulf apoptotic cells. We further show that exposure of eosinophils to apoptotic cells induces marked transcriptional changes in eosinophils, which polarize eosinophils towards an anti-inflammatory phenotype that is associated with wound healing and cell migration. Using an unbiased RNA sequencing approach, we demonstrate that apoptotic cells suppress the inflammatory responses of eosinophils that were activated with IFN-γ + E. coli (e.g., Type 1 eosinophils) and augment IL-4-induced eosinophil activation (e.g., Type 2 eosinophils). These data contribute to the growing understanding regarding the heterogeneity of eosinophil activation patterns and highlight apoptotic cells as potential regulators of eosinophil polarization.


Asunto(s)
Eosinófilos , Escherichia coli , Ratones , Animales , Eosinófilos/metabolismo , Escherichia coli/metabolismo , Citocinas/metabolismo , Interferón gamma/metabolismo , Apoptosis
4.
Cancer Gene Ther ; 29(11): 1676-1685, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35681020

RESUMEN

Inhibitory receptors (IRs), such as the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), are cell surface molecules expressed on both normal epithelial, endothelial, and hematopoietic cells and on neoplastic cells. IRs are usually used by cancer cells to inhibit immune cell functions. Thus, CEACAM1 positive tumor cells can interact homophilically with CEACAM1 expressed on T and NK cells to inhibit their antibody-dependent cell-mediated cytotoxicity (ADCC). In this study, we investigated the effect of agonistic/activating anti-CEACAM1 monoclonal antibody (mAb) on melanoma cell lines in vitro and in vivo, following our hypothesis that activation of CEACAM1 on melanoma cells by distinct mAbs may induce inhibition of cancer cell proliferation and/or their death. To address this, we established an activating anti-CEACAM1 mAb (CCM5.01) and characterized its binding to the CEACAM1 receptor. Using this mAb, we assessed the expression of CEACAM1 on four different human melanoma cell lines by western blot and flow cytometry and determined its effect on cell viability in vitro by MTT assay. Furthermore, we evaluated the mAb mechanism of action and found that binding of CEACAM1 with CCM5.01 induced SHP1 phosphorylation and p53 activation resulting in melanoma cell apoptosis. For in vivo studies, a xenograft model of melanoma was performed by injection of Mel-14 cells subcutaneously (s.c.) in SCID/Beige mice followed by intraperitoneal (i.p.) injection of CCM5.01 or of IgG1 isotype control every other day. CCM5.01 treated mice showed a slight but not significant decrease in tumor weight in comparison to the control group. Based on the obtained data, we suggest that activating CEACAM1 on melanoma cells might be a promising novel approach to fight cancers expressing this IR.


Asunto(s)
Anticuerpos Monoclonales , Melanoma , Humanos , Ratones , Animales , Anticuerpos Monoclonales/farmacología , Molécula 1 de Adhesión Celular , Ratones SCID , Línea Celular Tumoral , Melanoma/metabolismo , Antígeno Carcinoembrionario/metabolismo
5.
Clin Exp Immunol ; 209(1): 72-82, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35467728

RESUMEN

Eosinophils are innate immune cells typically associated with allergic and parasitic diseases. However, in recent years, eosinophils have also been ascribed a role in keeping homeostasis and in fighting several infectious diseases. Indeed, these cells circulate as mature cells in the blood and can be quickly recruited to the infected tissue. Moreover, eosinophils have all the necessary cellular equipment such as pattern recognition receptors (PRRs), pro-inflammatory cytokines, anti-bacterial proteins, and DNA traps to fight pathogens and promote an efficient immune response. This review summarizes some of the updated information on the role of eosinophils' direct and indirect mediated interactions with pathogens.


Asunto(s)
Infecciones Bacterianas , Eosinófilos , Micosis , Virosis , Infecciones Bacterianas/inmunología , Citocinas/metabolismo , Eosinófilos/inmunología , Humanos , Inmunidad Innata , Micosis/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Virosis/inmunología
6.
Pharmacol Res ; 158: 104682, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32035162

RESUMEN

Advanced systemic mastocytosis is a rare and still untreatable disease. Blocking antibodies against inhibitory receptors, also known as "immune checkpoints", have revolutionized anti-cancer treatment. Inhibitory receptors are expressed not only on normal immune cells, including mast cells but also on neoplastic cells. Whether activation of inhibitory receptors through monoclonal antibodies can lead to tumor growth inhibition remains mostly unknown. Here we show that the inhibitory receptor Siglec-7 is expressed by primary neoplastic mast cells in patients with systemic mastocytosis and by mast cell leukemia cell lines. Activation of Siglec-7 by anti-Siglec-7 monoclonal antibody caused phosphorylation of Src homology region 2 domain-containing phosphatase-1 (SHP-1), reduced phosphorylation of KIT and induced growth inhibition in mast cell lines. In SCID-beige mice injected with either the human mast cell line HMC-1.1 and HMC-1.2 or with Siglec-7 transduced B cell lymphoma cells, anti-Siglec-7 monoclonal antibody reduced tumor growth by a mechanism involving Siglec-7 cytoplasmic domains in "preventive" and "treatment" settings. These data demonstrate that activation of Siglec-7 on mast cell lines can inhibit their growth in vitro and in vivo. This might pave the way to additional treatment strategies for mastocytosis.


Asunto(s)
Lectinas/agonistas , Leucemia de Mastocitos/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Animales , Anticuerpos Monoclonales/uso terapéutico , Antígenos de Diferenciación Mielomonocítica , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Femenino , Genes src/efectos de los fármacos , Humanos , Leucemia de Mastocitos/patología , Linfoma de Células B/tratamiento farmacológico , Linfoma de Células B/patología , Masculino , Mastocitosis/tratamiento farmacológico , Ratones , Ratones SCID , Persona de Mediana Edad , Fosforilación , Proteína Tirosina Fosfatasa no Receptora Tipo 6/efectos de los fármacos , Proteínas Proto-Oncogénicas c-kit/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Allergy ; 74(7): 1257-1265, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30690753

RESUMEN

BACKGROUND: Siglec-7 is an inhibitory receptor (IR) expressed on human blood eosinophils. Whereas activation of other IRs, including Siglec-8 and CD300a, has been shown to downregulate eosinophil function, little is known about the role of Siglec-7 on human eosinophils. OBJECTIVE: To examine Siglec-7 expression and function in eosinophils from normal (ND) and eosinophilic (EO) donors. METHODS: Eosinophil expression of Siglec-7 was quantified by flow cytometry and quantitative PCR. Soluble Siglec-7 (sSiglec-7) levels were measured by ELISA in serum. The effect of Siglec-7 on eosinophil viability and degranulation was assessed in vitro by AnnexinV-FITC/7-AAD staining and by measuring GM-CSF-induced mediator release in culture supernatants. Signal transduction was studied by Western blot. RESULTS: Siglec-7 was expressed ex vivo on blood eosinophils from all eosinophilic and normal individuals studied. Siglec-7 surface, but not SIGLEC-7mRNA expression, was correlated with absolute eosinophil count (AEC). Siglec-7 was upregulated on purified eosinophils after in vitro stimulation with GM-CSF or IL-5. Serum sSiglec-7 was detectable in 133/144 subjects tested and correlated with AEC. Siglec-7 cross-linking inhibited GM-CSF-induced release of eosinophil peroxidase, TNF-α, and IL-8 (n = 7-8) but did not promote eosinophil apoptosis (n = 5). Finally, Siglec-7 cross-linking on GM-CSF-activated eosinophils induced phosphorylation of SHP-1 and de-phosphorylation of ERK1/2 and p38. CONCLUSIONS: Siglec-7 is constitutively expressed on human eosinophils and downmodulates eosinophil activation. Targeting of Siglec-7 on eosinophils might enhance treatment efficacy in eosinophil-driven disorders. Conversely, therapeutic interventions that inhibit Siglec-7 could have unanticipated consequences and promote eosinophilic inflammation.


Asunto(s)
Antígenos de Diferenciación Mielomonocítica/genética , Antígenos de Diferenciación Mielomonocítica/metabolismo , Eosinófilos/inmunología , Eosinófilos/metabolismo , Lectinas/genética , Lectinas/metabolismo , Antígenos de Diferenciación Mielomonocítica/sangre , Apoptosis/genética , Biomarcadores , Membrana Celular/metabolismo , Supervivencia Celular/genética , Citocinas/metabolismo , Eosinofilia/sangre , Eosinofilia/genética , Eosinofilia/metabolismo , Eosinofilia/patología , Citometría de Flujo , Expresión Génica , Humanos , Lectinas/sangre , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...