Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Vasc Access ; : 11297298221095994, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35773955

RESUMEN

BACKGROUND: The growing size of the end stage renal disease (ESRD) population highlights the need for effective dialysis access. Exhausted native vascular access options have led to increased use of catheters and prosthetic shunts, which are both associated with high risks of access failure and infection. Emerging alternatives include tissue-engineered vascular grafts (TEVG). Here we present the endpoint results for 10 ESRD patients with the scaffold-free tissue-engineered vascular access produced from sheets of extracellular matrix produced in vitro by human cells in culture. METHODS: Grafts were implanted as arteriovenous shunts in 10 ESRD patients with a complex history of access failure. Follow-up included ultrasound control of graft morphology and function, dialysis efficiency, access failure, intervention rate, as well as immunohistochemical analysis of graft structure. RESULTS: One patient died of unrelated causes and three shunts failed to become useable access grafts during the 3-month maturation phase. The 12-month primary and secondary patency for the other six shunts was 86%. Survival of six shunts functioning as the vascular access was 22 ± 12 months with longest primary patency of 38.6 months. The dialysis event rate of 3.34 per patient-year decreased significantly with the use of this TEVG to 0.67. CONCLUSIONS: This living autologous tissue-engineered vascular graft seems to be an alternative to synthetic vascular access options, exhibiting advantages of native arteriovenous fistula.

2.
J Vasc Surg ; 60(5): 1353-1357, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24103406

RESUMEN

An arteriovenous fistula is the current gold standard for chronic hemodialysis access. Tunneled catheters or synthetic grafts have poorer outcomes and much higher risks of infection. This report presents the first clinical use of a completely biological, allogeneic, nonliving, and human tissue-engineered vascular graft. Tissue-engineered vascular grafts built from allogeneic fibroblasts were implanted as shunts in three hemodialysis patients. The tissue-engineered vascular graft was stored for 9 months, without loss of mechanical strength. Implanted grafts showed no signs of degradation or dilation, with time points up to 11 months. Results of panel-reactive antibody and cross-reactivity tests showed no evidence of immune responses.


Asunto(s)
Derivación Arteriovenosa Quirúrgica/instrumentación , Bioprótesis , Implantación de Prótesis Vascular/instrumentación , Prótesis Vascular , Fibroblastos/trasplante , Diálisis Renal , Ingeniería de Tejidos/métodos , Anciano , Anciano de 80 o más Años , Derivación Arteriovenosa Quirúrgica/efectos adversos , Implantación de Prótesis Vascular/efectos adversos , Células Cultivadas , Femenino , Fibroblastos/inmunología , Hemodinámica , Humanos , Masculino , Persona de Mediana Edad , Diseño de Prótesis , Factores de Tiempo , Trasplante Homólogo , Resultado del Tratamiento , Ultrasonografía Doppler
3.
J Vasc Access ; 12(3): 185-92, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21404221

RESUMEN

Since Scribner described the first prosthetic chronic dialysis shunt in 1961, the surgical techniques and strategies to maintain vascular access have improved dramatically. Today, hundreds of thousands of patients worldwide are treated with some combination of native vein fistula, synthetic vascular graft, or synthetic semipermanent catheter. Despite significantly lower efficacy compared with autologous fistulae, the basic materials used for synthetic shunts and catheters have evolved surprisingly slowly. The disparity between efficacy rates and concomitant maintenance costs has driven a strong campaign to decrease the use of synthetic grafts and catheters in favor of native fistulae. Whether arguing the benefits of Fistula First or "Catheter Last," the fact that clinicians are in need of an alternative to expanded polytetrafluoroethylene (ePTFE) is irrefutable. The poor performance of synthetic materials has a significant economic impact as well. End-stage renal disease (ESRD) accounts for approximately 6% of Medicare's overall budget, despite a prevalence of about 0.17%. Of that, 15%-25% is spent on access maintenance, making hemodialysis access a critical priority for Medicare. This clinical and economic situation has spawned an aggressive effort to improve clinical care strategies to reduce overall cost and complications. While the bulk of this effort has historically focused on developing new synthetic biomaterials, more recently, investigators have developed a variety of cell-based strategies to create tissue-engineered vascular grafts. In this article, we review the evolution of the field of cardiovascular tissue engineering. We also present an update on the Lifeline™ vascular graft, an autologous, biological, and tissue-engineered vascular graft, which was the first tissue-engineered graft to be used clinically in dialysis patients.


Asunto(s)
Derivación Arteriovenosa Quirúrgica/instrumentación , Materiales Biocompatibles , Bioprótesis , Implantación de Prótesis Vascular/instrumentación , Prótesis Vascular , Fallo Renal Crónico/terapia , Diálisis Renal , Ingeniería de Tejidos , Animales , Derivación Arteriovenosa Quirúrgica/efectos adversos , Derivación Arteriovenosa Quirúrgica/historia , Materiales Biocompatibles/historia , Bioprótesis/historia , Prótesis Vascular/historia , Implantación de Prótesis Vascular/efectos adversos , Implantación de Prótesis Vascular/historia , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Fallo Renal Crónico/historia , Politetrafluoroetileno , Diseño de Prótesis , Diálisis Renal/historia , Ingeniería de Tejidos/historia
4.
J Vasc Access ; 12(1): 67-70, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21360466

RESUMEN

Previously we reported on the mid- to long-term follow-up in the first clinical trial to use a completely autologous tissue-engineered graft in the high pressure circulation. In these early studies, living grafts were built from autologous fibroblasts and endothelial cells obtained from small skin and vein biopsies. The graft was assembled using a technique called tissue-engineering by self-assembly (TESA), where robust conduits were grown without support from exogenous biomaterials or synthetic scaffolding. One limitation with this earlier work was the long lead times required to build the completely autologous vascular graft. Here we report the first implant of a frozen, devitalized, completely autologous Lifeline™ vascular graft. In a departure from previous studies, the entire fibroblast layer, which provides the mechanical backbone of the graft, was air-dried then stored at -80°C until shortly before implant. Five days prior to implant, the devitalized conduit was rehydrated, and its lumen was seeded with living autologous endothelial cells to provide an antithrombogenic lining. The graft was implanted as an arteriovenous shunt between the brachial artery and the axillary vein in a patient who was dependent upon a semipermanent dialysis catheter placed in the femoral vein. Eight weeks postoperatively, the graft functions without complication. This strategy of preemptive skin and vein biopsy and cold-preserving autologous tissue allows the immediate availability of an autologous arteriovenous fistula, and is an important step forward in our strategy to provide allogeneic tissue-engineered grafts available "off-the-shelf".


Asunto(s)
Derivación Arteriovenosa Quirúrgica , Vena Axilar/cirugía , Bioprótesis , Implantación de Prótesis Vascular/instrumentación , Prótesis Vascular , Arteria Braquial/cirugía , Criopreservación , Hemodilución , Fallo Renal Crónico/terapia , Ingeniería de Tejidos , Anciano , Vena Axilar/diagnóstico por imagen , Arteria Braquial/diagnóstico por imagen , Humanos , Masculino , Diseño de Prótesis , Factores de Tiempo , Tomografía Computarizada por Rayos X , Trasplante Autólogo , Resultado del Tratamiento , Ultrasonografía Doppler
5.
Lancet ; 373(9673): 1440-6, 2009 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-19394535

RESUMEN

BACKGROUND: Application of a tissue-engineered vascular graft for small-diameter vascular reconstruction has been a long awaited and much anticipated advance for vascular surgery. We report results after a minimum of 6 months of follow-up for the first ten patients implanted with a completely biological and autologous tissue-engineered vascular graft. METHODS: Ten patients with end-stage renal disease who had been receiving haemodialysis through an access graft that had a high probability of failure, and had had at least one previous access failure, were enrolled from centres in Argentina and Poland between September, 2004, and April, 2007. Completely autologous tissue-engineered vascular grafts were grown in culture supplemented with bovine serum, implanted as arteriovenous shunts, and assessed for both mechanical stability during the safety phase (0-3 months) and effectiveness after haemodialysis was started. FINDINGS: Three grafts failed within the safety phase, which is consistent with failure rates expected for this high-risk patient population. One patient was withdrawn from the study because of severe gastrointestinal bleeding shortly before implantation, and another died of unrelated causes during the safety period with a patent graft. The remaining five patients had grafts functioning for haemodialysis 6-20 months after implantation, and a total of 68 patient-months of patency. In these five patients, only one intervention (surgical correction) was needed to maintain secondary patency. Overall, primary patency was maintained in seven (78%) of the remaining nine patients 1 month after implantation and five (60%) of the remaining eight patients 6 months after implantation. INTERPRETATION: Our proportion of primary patency in this high-risk cohort approaches Dialysis Outcomes Quality Initiative objectives (76% of patients 3 months after implantation) for arteriovenous fistulas, averaged across all patient populations.


Asunto(s)
Derivación Arteriovenosa Quirúrgica , Bioprótesis , Prótesis Vascular , Fallo Renal Crónico/terapia , Diálisis Renal , Ingeniería de Tejidos/métodos , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Factores de Tiempo , Resultado del Tratamiento , Grado de Desobstrucción Vascular
6.
Biomaterials ; 30(8): 1542-50, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19111338

RESUMEN

We have previously reported the initial clinical feasibility with our small diameter tissue engineered blood vessel (TEBV). Here we present in vitro results of the mechanical properties of the TEBVs of the first 25 patients enrolled in an arterio-venous (A-V) shunt safety trial, and compare these properties with those of risk-matched human vein and artery. TEBV average burst pressures (3490+/-892 mmHg, n=230) were higher than native saphenous vein (SV) (1599+/-877 mmHg, n=7), and not significantly different from native internal mammary artery (IMA) (3196+/-1264 mmHg, n=16). Suture retention strength for the TEBVs (152+/-50 gmf) was also not significantly different than IMA (138+/-50 gmf). Compliance for the TEBVs prior to implantation (3.4+/-1.6%/100 mmHg) was lower than IMA (11.5+/-3.9%/100 mmHg). By 6 months post-implant, the TEBV compliance (8.8+/-4.2%/100 mmHg, n=5) had increased to values comparable to IMA, and showed no evidence of dilation or aneurysm formation. With clinical time points beyond 21 months as an A-V shunt without intervention, the mechanical tests and subsequent lot release criteria reported here would seem appropriate minimum standards for clinical use of tissue engineered vessels.


Asunto(s)
Vasos Sanguíneos/fisiología , Arterias Mamarias/fisiología , Vena Safena/fisiología , Ingeniería de Tejidos , Anciano , Anciano de 80 o más Años , Fenómenos Biomecánicos , Vasos Sanguíneos/citología , Demografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Presión , Donantes de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA