Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39071399

RESUMEN

The small intestine is well known for the function of its nutrient-absorbing enterocytes; yet equally critical for the maintenance of homeostasis is a diverse set of secretory cells, all of which are presumed to differentiate from the same intestinal stem cell. Despite major roles in intestinal function and health, understanding how the full spectrum of secretory cell types arises remains a longstanding challenge, largely due to their comparative rarity. Here, we investigate the fate specification of a rare and distinct population of small intestinal epithelial cells found in rats and humans but not mice: C FTR Hi gh E xpressers (CHEs). We use pseudotime trajectory analysis of single-cell RNA-seq data from rat intestinal jejunum to provide evidence that CHEs are specified along the secretory lineage and appear to employ a second wave of Notch-based signal transduction to distinguish these cells from other secretory cell types. We further validate the general order of transcription factors that direct these cells from unspecified progenitors within the crypt and experimentally demonstrate that Notch signaling is necessary to induce CHE fate both in vivo and in vitro . Our results suggest a model in which Notch is reactivated along the secretory lineage to specify the CHE population: a rare secretory cell type with putative functions in localized coordination of luminal pH and direct relevance to cystic fibrosis pathophysiology.

2.
J Vis Exp ; (196)2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37427951

RESUMEN

When using organoids to assess physiology and cell fate decisions, it is important to use a model that closely recapitulates in vivo contexts. Accordingly, patient-derived organoids are used for disease modeling, drug discovery, and personalized treatment screening. Mouse intestinal organoids are commonly utilized to understand aspects of both intestinal function/physiology and stem cell dynamics/fate decisions. However, in many disease contexts, rats are often preferred over mice as a model due to their greater physiological similarity to humans in terms of disease pathophysiology. The rat model has been limited by a lack of genetic tools available in vivo, and rat intestinal organoids have proven fragile and difficult to culture long-term. Here, we build upon previously published protocols to robustly generate rat intestinal organoids from the duodenum and jejunum. We provide an overview of several downstream applications utilizing rat intestinal organoids, including functional swelling assays, whole mount staining, the generation of 2D enteroid monolayers, and lentiviral transduction. The rat organoid model provides a practical solution to the need of the field for an in vitro model which retains physiological relevance to humans, can be quickly genetically manipulated, and is easily obtained without the barriers involved in procuring human intestinal organoids.


Asunto(s)
Intestinos , Yeyuno , Ratas , Ratones , Humanos , Animales , Diferenciación Celular , Células Madre , Organoides , Mucosa Intestinal
3.
Insects ; 14(2)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36835682

RESUMEN

Naupactus cervinus is a parthenogenetic weevil native to South America that is currently distributed worldwide. This flightless species is polyphagous and capable of modifying gene expression regimes for responding to stressful situations. Naupactus cervinus was first reported in the continental United States in 1879 and has rapidly colonized most of the world since. Previous studies suggested that an invader genotype successfully established even in areas of unsuitable environmental conditions. In the present work, we analyze mitochondrial and nuclear sequences from 71 individuals collected in 13 localities across three states in the southern US, in order to describe the genetic diversity in this area of introduction that has not yet been previously studied. Our results suggest that 97% of the samples carry the most prevalent invader genotype already reported, while the rest shows a close mitochondrial derivative. This would support the hypothesis of a general purpose genotype, with parthenogenesis and its associated lack of recombination maintaining the linkage of genetic variants capable of coping with adverse conditions and enlarging its geographical range. However, demographic advantages related to parthenogenetic reproduction as the main driver of geographic expansion (such as the foundation of a population with a single virgin female) cannot be ruled out. Given the historical introduction records and the prevalence of the invader genotype, it is possible that the continental US may act as a secondary source of introductions to other areas. We propose that both the parthenogenesis and scarce genetic variation in places of introduction may, in fact, be an asset that allows N. cervinus to thrive across a range of environmental conditions.

4.
J Endocrinol ; 252(1): 1-13, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34643545

RESUMEN

Inconsistencies have been reported on the effect of sex on aldosterone (ALDO) levels leading to clinical confusion. The reasons for these inconsistencies are uncertain but include estrogen and/or its receptor modulating target gene responses to mineralocorticoid receptor activation and ALDO secretagogues' levels. This study's goal was to determine whether ALDO's biosynthesis also differed by sex. Two approaches were used. First, plasma renin activity and aldosterone were measured in rats. Both were significantly higher in males. Secondly, using rat zona glomerulosa (ZG) cells, we assessed three ex vivo areas: (1) activity/levels of early steps in ALDO's biosynthesis (StAR and CYP11A1); (2) activity/levels of a late step (CYP11B2); and (3) the status of the mineralocorticoid receptor (MR)-mediated, ultrashort feedback loop. Females had higher expression of CYP11A1 and StAR and increased CYP11A1 activity (increased pregnenolone/corticosterone levels) but did not differ in CYP11B2 expression or activity (ALDO levels). Activating the ZG's MR (thereby activating the ultrashort feedback loop) reduced CYP11B2's activity similarly in both sexes. Exvivo, these molecular effects were accompanied, in females, by lower ALDO basally but higher ALDO with angiotensin II stimulation. In conclusion, we documented that not only was there a sex-mediated difference in the activity of ALDO's biosynthesis but also these differences at the molecular level help explain the variable reports on ALDO's circulating levels. Basally, both in vivo and ex vivo, males had higher ALDO levels, likely secondary to higher ALDO secretagogue levels. However, in response to acute stimulation, ALDO levels are higher in females because of the greater levels and/or activity of their StAR/CYP11A1.


Asunto(s)
Aldosterona/metabolismo , Caracteres Sexuales , Zona Glomerular/metabolismo , Angiotensina II/farmacología , Animales , Células Cultivadas , Femenino , Expresión Génica/efectos de los fármacos , Masculino , Ratas , Ratas Wistar , Vías Secretoras/efectos de los fármacos , Vías Secretoras/genética , Vías Secretoras/fisiología , Zona Glomerular/citología , Zona Glomerular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA