Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 393: 130123, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38042435

RESUMEN

The objective was to investigate the impact of the bioaugmentation on chain elongation process using glycerol, lactate and lactose as substrates in an open culture fermentation. In the batch trials the highest selectivity for chain elongation product, i.e. caproate, was observed in trials inoculated with co-culture of Megasphaera elsdenii and Eubacterium limosum grown on glycerol (28.6%), and in non-bioaugmented open culture run on lactose + lactate (14.8%). The results showed that E. limosum, out of two bioaugmented strains, was able to survive in the open culture. A continuous open culture fermentation of glycerol led to caproate and 1,3-propanediol (1,3-PDO) formation, while lactate addition led to 1,3-PDO and short chain carboxylates production. Moving the process into batch mode triggered even-carbon chain elongation. Presence of E. limosum promoted odd-carbon chain elongation and valerate production. Imaging flow cytometry combined with machine learning enabled the discrimination of Eubacterium cells from other microbial strains during the process.


Asunto(s)
Caproatos , Ácido Láctico , Glicoles de Propileno , Ácidos Carboxílicos , Glicerol , Lactosa , Fermentación , Propilenglicol , Carbono
2.
Bioresour Technol ; 358: 127309, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35569715

RESUMEN

This study assessed the effect of hydraulic retention time (HRT) ranging from 24 to 3 h on continuous dark-fermentative H2 production in four bioreactors operated at pH 5.0, 5.5, 6.0 and 6.5. A mixture of cellobiose, xylose and arabinose was used as the substrate. The highest hydrogen production rate between HRTs of 24 and 12 h was observed at pH 6.5, while at HRT below 12 h at pH 6.0. At a HRT of 3 h it reached 11.4 L H2/L-d. Thus, the optimum pH for H2 production depends on the HRT. The highest sugar utilization was obtained at pH 6.0 and 6.5 and decreased in the following order: cellobiose > xylose > arabinose. The pH conditions, in contrast to HRT, were found to have a significant influence on the bacterial composition. Low diversity in bacterial culture dominated by the Clostridium genus allows for stable and high H2 production performance.


Asunto(s)
Hidrógeno , Xilosa , Arabinosa , Reactores Biológicos/microbiología , Celobiosa , Fermentación , Concentración de Iones de Hidrógeno , Lignina
3.
Bioresour Technol ; 318: 123895, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32739091

RESUMEN

The objective of the study was to valorize waste stream for the co-production of hydrogen and caproate via open culture fermentation (OCF). Batch studies confirmed that the use of sugar (lactose) together with carboxylates (lactate and acetate) may allow mutual coexistence of chain elongation and dark fermentation processes. During the continuous test in an upflow anaerobic sludge blanket reactor (UASB), acid whey was used as a model feedstock due to a high concentration of lactose and lactate. Shortening hydraulic retention time (HRT) to 2.5 days allowed the co-production of hydrogen and caproate with almost complete methanogenesis inhibition. During the 50 days period, the average hydrogen and caproate production were 1.78 ± 0.75 LH2/L/d and 133.4 ± 17.9 mmol C/L/d, respectively.


Asunto(s)
Reactores Biológicos , Hidrógeno , Anaerobiosis , Caproatos , Fermentación , Aguas del Alcantarillado , Eliminación de Residuos Líquidos
4.
Sci Total Environ ; 728: 138814, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32361117

RESUMEN

The objective of this study was to investigate the effect of substrate composition on chain elongation pathways and on shaping reactor microbiome during open culture fermentation (OCF). The process was performed in a continuous mode in an upflow anaerobic sludge blanket (UASB) reactor fed with either fresh acid whey (AW) or AW at controlled stage of prefermentation (with controlled content of electron donors). Dosing AW with an increasing ethanol loading rate led to ethanol oxidation and short chain carboxylic acids (SCCAs) generation. Change of the feedstock composition (higher lactate and lactose content and ethanol cut off) shifted the process outcome towards medium chain carboxylic acids (MCCAs) production, with caproate as the main product. The MCCAs production rate has grown from 0.7 ± 0 to 4.12 ± 1 g/L/day (38.3 ± 5 to 212.6 ± 60 mmol C/L/day) and reached specificity of 48 ± 18% mol C. The differentiation between microbiome samples confirmed the reactor microbiome shaped according to the feed composition. The only known caproic acid producers were represented by Caproiciproducens ssp., that reached a relative OTU abundance between 3 and 7%. The developed method enables to substitute the use of fossil resources with products from the OCF of waste and wastewater. Thus, it contributes to reduce the carbon footprint and enhance the sustainability of the chemical industry.


Asunto(s)
Reactores Biológicos , Ácidos Carboxílicos , Etanol , Fermentación , Aguas del Alcantarillado
5.
Environ Sci Technol ; 54(9): 5864-5873, 2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32267683

RESUMEN

Chain elongation is a process that produces medium chain fatty acids such as caproic acid, which is one of the promising products of the carboxylate platform. This study analyzed the impact of bioaugmentation of heat-treated anaerobic digester sludge with Clostridium kluyveri (AS + Ck) on caproic acid production from a mixed substrate (lactose, lactate, acetate, and ethanol). It was compared with processes initiated with non-augmented heat-treated anaerobic digester sludge (AS) and mono-culture of C. kluyveri (Ck). Moreover, stability of the chain elongation process was evaluated by performing repeated batch experiments. All bacterial cultures demonstrated efficient caproate production in the first batch cycle. After 18 days, caproate concentration reached 9.06 ± 0.43, 7.86 ± 0.38, and 7.67 ± 0.37 g/L for AS, Ck, and AS + Ck cultures, respectively. In the second cycle, AS microbiome was enriched toward caproate production and showed the highest caproate concentration of 11.44 ± 0.47 g/L. On the other hand, bioaugmented culture showed the lowest caproate production in the second cycle (4.10 ± 0.30 g/L). Microbiome analysis in both AS and AS + Ck culture samples indicated strong enrichment toward the anaerobic order of Clostridia. Strains belonging to genera Sporanaerobacter, Paraclostridium, Haloimpatiens, Clostridium, and Bacillus were dominating in the bioreactors.


Asunto(s)
Clostridium kluyveri , Reactores Biológicos , Caproatos , Carbono , Clostridium , Fermentación
6.
Pol J Microbiol ; 69(1): 109-120, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32189481

RESUMEN

Hydrogen produced from lignocellulose biomass is deemed as a promising fuel of the future. However, direct cellulose utilization remains an issue due to the low hydrogen yields. In this study, the long-term effect of inoculum (anaerobic sludge) heat pretreatment on hydrogen production from untreated cellulose and starch was evaluated during repeated batch processes. The inoculum pretreatment at 90°C was not sufficient to suppress H2 consuming bacteria, both for starch and cellulose. Although hydrogen was produced, it was rapidly utilized with simultaneous accumulation of acetic and propionic acid. The pretreatment at 100°C (20 min) resulted in the successful enrichment of hydrogen producers on starch. High production of hydrogen (1.2 l H2/lmedium) and H2 yield (1.7 mol H2/molhexose) were maintained for 130 days, with butyric (1.5 g/l) and acetic acid (0.65 g/l) as main byproducts. On the other hand, the process with cellulose showed lower hydrogen production (0.3 l H2/lmedium) with simultaneous high acetic acid (1.4 g/l) and ethanol (1.2 g/l) concentration. Elimination of sulfates from the medium led to the efficient production of hydrogen in the initial cycles - 0.97 mol H2/molhexose (5.93 mmol H2/gcellulose). However, the effectiveness of pretreatment was only temporary for cellulose, because propionic acid accumulation (1.5 g/l) was observed after 25 days, which resulted in lower H2 production. The effective production of hydrogen from cellulose was also maintained for 40 days in a repeated fed-batch process (0.63 mol H2/molhexose).Hydrogen produced from lignocellulose biomass is deemed as a promising fuel of the future. However, direct cellulose utilization remains an issue due to the low hydrogen yields. In this study, the long-term effect of inoculum (anaerobic sludge) heat pretreatment on hydrogen production from untreated cellulose and starch was evaluated during repeated batch processes. The inoculum pretreatment at 90°C was not sufficient to suppress H2 consuming bacteria, both for starch and cellulose. Although hydrogen was produced, it was rapidly utilized with simultaneous accumulation of acetic and propionic acid. The pretreatment at 100°C (20 min) resulted in the successful enrichment of hydrogen producers on starch. High production of hydrogen (1.2 l H2/lmedium) and H2 yield (1.7 mol H2/molhexose) were maintained for 130 days, with butyric (1.5 g/l) and acetic acid (0.65 g/l) as main byproducts. On the other hand, the process with cellulose showed lower hydrogen production (0.3 l H2/lmedium) with simultaneous high acetic acid (1.4 g/l) and ethanol (1.2 g/l) concentration. Elimination of sulfates from the medium led to the efficient production of hydrogen in the initial cycles ­ 0.97 mol H2/molhexose (5.93 mmol H2/gcellulose). However, the effectiveness of pretreatment was only temporary for cellulose, because propionic acid accumulation (1.5 g/l) was observed after 25 days, which resulted in lower H2 production. The effective production of hydrogen from cellulose was also maintained for 40 days in a repeated fed-batch process (0.63 mol H2/molhexose).


Asunto(s)
Celulosa/metabolismo , Fermentación , Hidrógeno/metabolismo , Consorcios Microbianos , Almidón/metabolismo , Ácido Acético/metabolismo , Bacterias/metabolismo , Técnicas de Cultivo Celular por Lotes , Biomasa , Calor , Propionatos/metabolismo
7.
Bioresour Technol ; 279: 74-83, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30711755

RESUMEN

The objective of this study was to investigate the potential of supplementing ethanol and lactic acid as electron donors in reverse ß-oxidation for short chain carboxylic acids chain elongation during anaerobic fermentation of acid whey. Best results were achieved when lactic acid was added at concentration of 300 mM. It resulted in medium chain carboxylic acids (MCCAs) concentration of 5.0 g/L. In the trials with ethanol addition, the overall yield was 20% lower. Subsequently liquid-liquid extraction with ionic liquids (ILs) was investigated as a potential purification method of caproic acid. The most promising, with respect to recovery of caproic acid, was piperazinium IL [C1C1C10Ppz][NTF2], however, the selectivity was only 0.39. Less effective [C1C1C6Ppz][NTF2] recovered 85.9% of caproic acid while reaching a higher selectivity of 0.53. Technoeconomic model revealed that to meet the conservative value of $2.25 per kg of caproic acid, the downstream processing should not exceed $0.65 per kg.


Asunto(s)
Caproatos/metabolismo , Suero Lácteo/metabolismo , Reactores Biológicos , Electrones , Etanol/metabolismo , Fermentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA