Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gels ; 9(8)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37623105

RESUMEN

Nanostructured oxides (SiO2, TiO2) were synthesized using the sol-gel method and modified with noble metal nanoparticles (Pt, Au) and ruthenium dye to enhance light harvesting and promote the photogeneration of reactive oxygen species, namely singlet oxygen (1O2) and hydroxyl radical (•OH). The resulting nanostructures were embedded in a transparent polyvinyl alcohol (PVA) hydrogel. Morphological and structural characterization of the bare and modified oxides was performed using scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), UV-Vis spectroscopy, and X-ray photoelectron spectroscopy (XPS). Additionally, electrokinetic potential measurements were conducted. Crystallinity data and elemental analysis of the investigated systems were obtained through X-ray diffraction and X-ray fluorescence analyses, while the chemical state of the elements was determined using XPS. The engineered materials, both as simple powders and embedded in the hydrogel, were evaluated for their ability to generate reactive oxygen species (ROS) under visible and simulated solar light irradiation to establish a correlation with their antibacterial activity against Staphylococcus aureus. The generation of singlet oxygen (1O2) by the samples under visible light exposure can be of significant importance for their potential use in biomedical applications.

2.
Antioxidants (Basel) ; 12(3)2023 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-36978939

RESUMEN

ZnSe, ZnSe-TiO2 microspheres and nanostructured TiO2 obtained by hydrothermal and sol-gel methods were tested against Staphylococcus aureus ATCC 25923 and Micrococcus lysodeikticus ATCC 4698 before and after lysozyme (Lys) loading. Morphological characterization of inorganic matrices and hybrid organic-inorganic complexes were performed by microscopy techniques (SEM, AFM and Dark Field Hyperspectral Microscopy). Light absorption properties of ZnSe, ZnSe-TiO2 and TiO2 powders were assessed by UV-visible spectroscopy and their ability to generate reactive oxygen species (•OH and O2•-) under visible light irradiation was investigated. Antibacterial activity of ZnSe, ZnSe-TiO2, TiO2, Lys/ZnSe, Lys/ZnSe-TiO2 and Lys/TiO2 samples under exposure to visible light irradiation (λ > 420 nm) was tested against Staphylococcus aureus and Micrococcus lysodeikticus and correlated with ROS photogeneration.

3.
Gels ; 8(12)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36547335

RESUMEN

In this paper, we conducted a fundamental study concerning the effect of thermal treatment on the structure and morphology of 2 mol% vanadium doped ZnO nanopowders obtained by microwave assisted sol-gel method (MW). The samples were analyzed by DTA, FTIR, XRD, SEM, and UV-Vis spectroscopy. The DTA results showed that above 500 °C, there was no mass loss in the TG curves, and ZnO crystallization occurred. The XRD patterns of the thermally treated powders at 500 °C and 650 °C showed the crystallization of ZnO (zincite) belonging to the wurtzite-type structure. It was found that in the 650 °C thermally treated powder, aside from ZnO, traces of Zn3(VO4)2 existed. FTIR spectra of the annealed samples confirmed the formation of the ZnO crystalline phase and V-O bands. The micrographs revealed that the temperature influenced the morphology. The increase in the annealing temperature led to the grain growth. The SEM images of the MW powder thermally treated at 650 °C showed two types of grains: hexagonal grains and cylindrical nanorods. UV-Vis spectra showed that the absorption band also increased with the increasing temperature of thermal treatment. The MW sample annealed at 650 °C had the highest absorption in ultraviolet domain.

4.
Gels ; 8(11)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36354625

RESUMEN

The aim of the present study was the development of Nb-doped ITO thin films for carbon monoxide (CO) sensing applications. The detection of CO is imperious because of its high toxicity, with long-term exposure having a negative impact on human health. Using a feasible sol-gel method, the doped ITO thin films were prepared at room temperature and deposited onto various substrates (Si, SiO2/glass, and glass). The structural, morphological, and optical characterization was performed by the following techniques: X-ray diffractometry (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and UV/Vis/NIR spectroscopic ellipsometry (SE). The analysis revealed a crystalline structure and a low surface roughness of the doped ITO-based thin films. XTEM analysis (cross-sectional transmission electron microscopy) showed that the film has crystallites of the order of 5-10 nm and relatively large pores (around 3-5 nm in diameter). A transmittance value of 80% in the visible region and an optical band-gap energy of around 3.7 eV were found for dip-coated ITO/Nb films on SiO2/glass and glass supports. The EDX measurements proved the presence of Nb in the ITO film in a molar ratio of 3.7%, close to the intended one (4%). Gas testing measurements were carried out on the ITO undoped and doped thin films deposited on glass substrate. The presence of Nb in the ITO matrix increases the electrical signal and the sensitivity to CO detection, leading to the highest response for 2000 ppm CO concentration at working temperature of 300 °C.

5.
Nanomaterials (Basel) ; 12(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36144974

RESUMEN

This work presents the synthesis of nanostructured TiO2 modified with noble metal nanoparticles (Au, Ag) and lysozyme and coated on titanium foil. Moreover, the specific structural and functional properties of the resulting inorganic and hybrid materials were explored. The purpose of this study was to identify the key parameters for developing engineered coatings on titanium foil appropriate for efficient dental implants with intrinsic antibacterial activity. TiO2 nanoparticles obtained using the sol-gel method were deposited on Ti foil and modified with Au/Ag nanoparticles. Morphological and structural investigations (scanning electron and atomic force microscopies, X-ray diffraction, photoluminescence, and UV-Vis spectroscopies) were carried out for the characterization of the resulting inorganic coatings. In order to modify their antibacterial activity, which is essential for safe dental implants, the following aspects were investigated: (a) singlet oxygen (1O2) generation by inorganic coatings exposed to visible light irradiation; (b) the antibacterial behavior emphasized by titania-based coatings deposited on titanium foil (TiO2/Ti foil; Au-TiO2/Ti foil, Ag-TiO2/Ti foil); (c) the lysozyme bioactivity on the microbial substrate (Micrococcus lysodeicticus) after its adsorption on inorganic surfaces (Lys/TiO2/Ti foil; Lys/Au-TiO2/Ti foil, Lys/Ag-TiO2/Ti foil); (d) the enzymatic activity of the above-mentioned hybrids materials for the hydrolysis reaction of a synthetic organic substrate usually used for monitoring the lysozyme biocatalytic activity, namely, 4-Methylumbelliferyl ß-D-N,N',N″-triacetylchitotrioside [4-MU-ß- (GlcNAc)3]. This was evaluated by identifying the presence of a fluorescent reaction product, 7-hydroxy-4-metyl coumarin (4-methylumbelliferone).

6.
Nanomaterials (Basel) ; 12(18)2022 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-36145032

RESUMEN

Undoped and Zn-doped ITO (ITO:Zn) multifunctional thin films were successfully synthesized using the sol-gel and dipping method on three different types of substrates (glass, SiO2/glass, and Si). The effect of Zn doping on the optoelectronic, microstructural, and gas-sensing properties of the films was investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), spectroscopic ellipsometry (SE), Raman spectroscopy, Hall effect measurements (HE), and gas testing. The results showed that the optical constants, the transmission, and the carrier numbers were correlated with the substrate type and with the microstructure and the thickness of the films. The Raman study showed the formation of ITO films and the incorporation of Zn in the doped film (ITO:Zn), which was confirmed by EDX analysis. The potential use of the multifunctional sol-gel ITO and ITO:Zn thin films was proven for TCO applications or gas-sensing experiments toward CO2. The Nyquist plots and equivalent circuit for fitting the experimental data were provided. The best electrical response of the sensor in CO2 atmosphere was found at 150 °C, with activation energy of around 0.31 eV.

7.
Molecules ; 23(6)2018 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-29874881

RESUMEN

A wide range of hybrid biomaterials has been designed in order to sustain bioremediation processes by associating sol-gel SiO2 matrices with various biologically active compounds (enzymes, antibodies). SiO2 is a widespread, chemically stable and non-toxic material; thus, the immobilization of enzymes on silica may lead to improving the efficiency of biocatalysts in terms of endurance and economic costs. Our present work explores the potential of different hybrid morphologies, based on hollow tubes and solid spheres of amorphous SiO2, for enzyme immobilization and the development of competitive biocatalysts. The synthesis protocol and structural characterization of spherical and tubular SiO2 obtained by the sol gel method were fully investigated in connection with the subsequent immobilization of lipase from Rhizopus orizae. The immobilization is conducted at pH 6, lower than the isoelectric point of lipase and higher than the isoelectric point of silica, which is meant to sustain the physical interactions of the enzyme with the SiO2 matrix. The morphological, textural and surface properties of spherical and tubular SiO2 were investigated by SEM, nitrogen sorption, and electrokinetic potential measurements, while the formation and characterization of hybrid organic-inorganic complexes were studied by UV-VIS, FTIR-ATR and fluorescence spectroscopy. The highest degree of enzyme immobilization (as depicted from total organic carbon) was achieved for tubular morphology and the hydrolysis of p-nitrophenyl acetate was used as an enzymatic model reaction conducted in the presence of hybrid lipase⁻SiO2 complex.


Asunto(s)
Enzimas Inmovilizadas/metabolismo , Geles , Lipasa/metabolismo , Dióxido de Silicio/química , Catálisis , Técnicas Electroquímicas/métodos , Concentración de Iones de Hidrógeno , Cinética , Luminiscencia , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier
8.
Phys Chem Chem Phys ; 20(21): 14652-14663, 2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29770415

RESUMEN

The formation of separate phases in crystalline materials is promoted by doping with elements with different valences and ionic radii. Control of the formation of separate phases in multiferroics is extremely important for their magnetic, ferroelectric and elastic properties, which are relevant for multifunctional applications. The ordering of dopants and incipient phase separation were studied in lead titanate-based multiferroics with the formula (Pb0.88Nd0.08)(Ti0.98-xFexMn0.02)O3 (x = 0.00, 0.03, 0.04, 0.05) by means of a combination of Mössbauer spectroscopy, XPS, HRTEM, dielectric and anelastic spectroscopy. We found that Fe ions are substituted as Fe3+ at Ti sites and preferentially exhibit pentahedral coordination, whereas Ti ions have coexisting valences of Ti4+/Ti3+. Fe3+ ions are preferentially ordered in clusters, and there exists a transition temperature TC1, below which phase separation occurs between a tetragonal phase T1 free of magnetic clusters and a cubic phase, and a lower transition temperature TC2, below which the cubic phase rich in magnetic clusters is transformed into a tetragonal phase T2. The phase separation persists at the nanoscale level down to room temperature and is visible in HRTEM images as a mixing of nanodomains with different tetragonality ratios. This phase separation was observed over the whole studied concentration range of xFe values. It occurs progressively with the value of xFe, and the transition temperature TC2 decreases with the concentration from about 620 K (xFe = 0.03) to about 600 K (xFe = 0.05), while TC1 remains nearly constant.

9.
Acta Chim Slov ; 61(3): 548-54, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25286210

RESUMEN

Liquid precursors of (K(0.5)Na(0.5))NbO(3) thin-films were prepared from alkali acetates and niobium ethoxide in 2-methoxyethanol solvent either in a stoichiometric ratio or with 5 or 10 mole % of potassium or sodium acetate excess. Fourier-transform infrared (FTIR) spectroscopy of the dried precursors confirmed the presence of acetate and hydroxyl groups. Thermal decompositions of the as-dried precursors in air occurred gradually. Between room temperature and ~200 °C, the weight loss of a few per cent was due to the evaporation of residual solvents. The major mass loss was due to thermal oxidation of organic group with the major exothermic events at about 250 °C and 450 °C, almost 200 °C below the onset of the chemical decomposition of alkali acetates, indicating that a heterometallic complex was formed in solution, in agreement with FTIR analysis. Both the amount and to a lesser extent the choice of alkali-acetate excess influenced the thermal decomposition of the organic groups predominantly in the temperature interval between ~200 °C and ~400 °C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...