Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(5): 107290, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38636664

RESUMEN

Endogenous and exogenous chemical agents are known to compromise the integrity of RNA and cause ribosome stalling and collisions. Recent studies have shown that collided ribosomes serve as sensors for multiple processes, including ribosome quality control (RQC) and the integrated stress response (ISR). Since RQC and the ISR have distinct downstream consequences, it is of great importance that organisms activate the appropriate process. We previously showed that RQC is robustly activated in response to collisions and suppresses the ISR activation. However, the molecular mechanics behind this apparent competition were not immediately clear. Here we show that Hel2 does not physically compete with factors of the ISR, but instead its ribosomal-protein ubiquitination activity, and downstream resolution of collided ribosomes, is responsible for suppressing the ISR. Introducing a mutation in the RING domain of Hel2-which inhibits its ubiquitination activity and downstream RQC but imparts higher affinity of the factor for collided ribosomes-resulted in increased activation of the ISR upon MMS-induced alkylation stress. Similarly, mutating Hel2's lysine targets in uS10, which is responsible for RQC activation, resulted in increased Gcn4 target induction. Remarkably, the entire process of RQC appears to be limited by the action of Hel2, as the overexpression of this one factor dramatically suppressed the activation of the ISR. Collectively, our data suggest that cells evolved Hel2 to bind collided ribosomes with a relatively high affinity but kept its concentration relatively low, ensuring that it gets exhausted under stress conditions that cannot be resolved by quality control processes.

2.
mBio ; 14(5): e0141623, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37589464

RESUMEN

IMPORTANCE: As deficiencies in tRNA modifications have been linked to human diseases such as cancer and diabetes, much research has focused on the modifications' impacts on translational regulation in eukaryotes. However, the significance of tRNA modifications in bacterial physiology remains largely unexplored. In this paper, we demonstrate that the m7G tRNA methyltransferase TrmB is crucial for a top-priority pathogen, Acinetobacter baumannii, to respond to stressors encountered during infection, including oxidative stress, low pH, and iron deprivation. We show that loss of TrmB dramatically attenuates a murine pulmonary infection. Given the current efforts to use another tRNA methyltransferase, TrmD, as an antimicrobial therapeutic target, we propose that TrmB, and other tRNA methyltransferases, may also be viable options for drug development to combat multidrug-resistant A. baumannii.


Asunto(s)
Acinetobacter baumannii , Neumonía , Animales , Humanos , Ratones , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/patogenicidad , Farmacorresistencia Bacteriana Múltiple/genética , Estrés Oxidativo , Neumonía/microbiología , Neumonía/patología , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/metabolismo
3.
Front Immunol ; 13: 1007022, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389718

RESUMEN

Juvenile dermatomyositis (JDM) is a pediatric autoimmune disease associated with characteristic rash and proximal muscle weakness. To gain insight into differential lymphocyte gene expression in JDM, peripheral blood mononuclear cells from 4 new-onset JDM patients and 4 healthy controls were sorted into highly enriched lymphocyte populations for RNAseq analysis. NK cells from JDM patients had substantially greater differentially expressed genes (273) than T (57) and B (33) cells. Upregulated genes were associated with the innate immune response and cell cycle, while downregulated genes were associated with decreased ribosomal RNA. Suppressed ribosomal RNA in JDM NK cells was validated by measuring transcription and phosphorylation levels. We confirmed a population of low ribosome expressing NK cells in healthy adults and children. This population of low ribosome NK cells was substantially expanded in 6 treatment-naïve JDM patients and was associated with decreased NK cell degranulation. The enrichment of this NK low ribosome population was completely abrogated in JDM patients with quiescent disease. Together, these data suggest NK cells are highly activated in new-onset JDM patients with an increased population of low ribosome expressing NK cells, which correlates with decreased NK cell function and resolved with control of active disease.


Asunto(s)
Dermatomiositis , Adulto , Humanos , Niño , Leucocitos Mononucleares/metabolismo , Células Asesinas Naturales/metabolismo , Ribosomas/genética , Ribosomas/metabolismo , ARN Ribosómico/genética
4.
Mol Cell ; 82(17): 3124-3125, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36055206

RESUMEN

In plants, pattern-triggered immunity shuts down global translation while allowing the translation of defense mRNAs. Wang et al. (2022) describe a previously unknown mechanism for how elements in the 5' UTR of these mRNAs can recruit the translation machinery to initiate protein synthesis.


Asunto(s)
Biosíntesis de Proteínas , Regiones no Traducidas 5' , ARN Mensajero/genética
5.
Cell Rep ; 40(9): 111300, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35988540

RESUMEN

Synthetic mRNA technology is a promising avenue for treating and preventing disease. Key to the technology is the incorporation of modified nucleotides such as N1-methylpseudouridine (m1Ψ) to decrease immunogenicity of the RNA. However, relatively few studies have addressed the effects of modified nucleotides on the decoding process. Here, we investigate the effect of m1Ψ and the related modification pseudouridine (Ψ) on translation. In a reconstituted system, we find that m1Ψ does not significantly alter decoding accuracy. More importantly, we do not detect an increase in miscoded peptides when mRNA containing m1Ψ is translated in cell culture, compared with unmodified mRNA. We also find that m1Ψ does not stabilize mismatched RNA-duplex formation and only marginally promotes errors during reverse transcription. Overall, our results suggest that m1Ψ does not significantly impact translational fidelity, a welcome sign for future RNA therapeutics.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , COVID-19/prevención & control , Humanos , Nucleótidos , Proteínas , Seudouridina/genética , ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Vacunas Sintéticas , Vacunas de ARNm
6.
Trends Biochem Sci ; 47(1): 82-97, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34607755

RESUMEN

The recent discovery that collision of ribosomes triggers quality control and stress responses in eukaryotes has shifted the perspective of the field. Collided eukaryotic ribosomes adopt a unique structure, acting as a ubiquitin signaling platform for various response factors. While several of the signals that determine which downstream pathways are activated have been uncovered, we are only beginning to learn how the specificity for the activation of each process is achieved during collisions. This review will summarize those findings and how ribosome-associated factors act as molecular sentinels, linking aberrations in translation to the overall cellular state. Insights into how cells respond to ribosome collision events will provide greater understanding of the role of the ribosome in the maintenance of cellular homeostasis.


Asunto(s)
Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Ribosomas/metabolismo
7.
Elife ; 102021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34723799

RESUMEN

Three-methyl cytosine (3meC) are toxic DNA lesions, blocking base pairing. Bacteria and humans express members of the AlkB enzymes family, which directly remove 3meC. However, other organisms, including budding yeast, lack this class of enzymes. It remains an unanswered evolutionary question as to how yeast repairs 3meC, particularly in single-stranded DNA. The yeast Shu complex, a conserved homologous recombination factor, aids in preventing replication-associated mutagenesis from DNA base damaging agents such as methyl methanesulfonate (MMS). We found that MMS-treated Shu complex-deficient cells exhibit a genome-wide increase in A:T and G:C substitutions mutations. The G:C substitutions displayed transcriptional and replicational asymmetries consistent with mutations resulting from 3meC. Ectopic expression of a human AlkB homolog in Shu-deficient yeast rescues MMS-induced growth defects and increased mutagenesis. Thus, our work identifies a novel homologous recombination-based mechanism mediated by the Shu complex for coping with alkylation adducts.


Asunto(s)
Recombinación Homóloga/efectos de los fármacos , Metilmetanosulfonato/farmacología , Mutágenos/farmacología , Saccharomyces cerevisiae/genética , Alquilación , Mutagénesis , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Mol Cell ; 81(3): 614-628.e4, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33338396

RESUMEN

Stalling during translation triggers ribosome quality control (RQC) to maintain proteostasis. Recently, stalling has also been linked to the activation of integrated stress response (ISR) by Gcn2. How the two processes are coordinated is unclear. Here, we show that activation of RQC by Hel2 suppresses that of Gcn2. We further show that Hel2 and Gcn2 are activated by a similar set of agents that cause ribosome stalling, with maximal activation of Hel2 observed at a lower frequency of stalling. Interestingly, inactivation of one pathway was found to result in the overactivation of the other, suggesting that both are activated by the same signal of ribosome collisions. Notably, the processes do not appear to be in direct competition with each other; ISR prefers a vacant A site, whereas RQC displays no preference. Collectively, our findings provide important details about how multiple pathways that recognize stalled ribosomes coordinate to mount the appropriate response.


Asunto(s)
Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico , Ubiquitina-Proteína Ligasas/metabolismo , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Factores de Elongación de Péptidos/genética , Factores de Elongación de Péptidos/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ribosomas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Estrés Fisiológico/genética , Factores de Tiempo , Ubiquitina-Proteína Ligasas/genética , Ubiquitinación
9.
Elife ; 92020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32940602

RESUMEN

Similar to DNA replication, translation of the genetic code by the ribosome is hypothesized to be exceptionally sensitive to small chemical changes to its template mRNA. Here we show that the addition of common alkylating agents to growing cultures of Escherichia coli leads to the accumulation of several adducts within RNA, including N(1)-methyladenosine (m1A). As expected, the introduction of m1A to model mRNAs was found to reduce the rate of peptide bond formation by three orders of magnitude in a well-defined in vitro system. These observations suggest that alkylative stress is likely to stall translation in vivo and necessitates the activation of ribosome-rescue pathways. Indeed, the addition of alkylation agents was found to robustly activate the transfer-messenger RNA system, even when transcription was inhibited. Our findings suggest that bacteria carefully monitor the chemical integrity of their mRNA and they evolved rescue pathways to cope with its effect on translation.


Asunto(s)
Alquilantes/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , ARN Bacteriano , ARN Mensajero , Ribosomas , Alquilación , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Metilmetanosulfonato/farmacología , Metilnitronitrosoguanidina/farmacología , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Mensajero/química , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo , Ribosomas/química , Ribosomas/efectos de los fármacos , Ribosomas/metabolismo
10.
Nat Commun ; 10(1): 5611, 2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31819057

RESUMEN

Oxidation and alkylation of nucleobases are known to disrupt their base-pairing properties within RNA. It is, however, unclear whether organisms have evolved general mechanism(s) to deal with this damage. Here we show that the mRNA-surveillance pathway of no-go decay and the associated ribosome-quality control are activated in response to nucleobase alkylation and oxidation. Our findings reveal that these processes are important for clearing chemically modified mRNA and the resulting aberrant-protein products. In the absence of Xrn1, the level of damaged mRNA significantly increases. Furthermore, deletion of LTN1 results in the accumulation of protein aggregates in the presence of oxidizing and alkylating agents. This accumulation is accompanied by Hel2-dependent regulatory ubiquitylation of ribosomal proteins. Collectively, our data highlight the burden of chemically damaged mRNA on cellular homeostasis and suggest that organisms evolved mechanisms to counter their accumulation.


Asunto(s)
Estrés Oxidativo , Ribosomas/metabolismo , 4-Nitroquinolina-1-Óxido/metabolismo , Alquilación , Aductos de ADN/metabolismo , Daño del ADN , Células HEK293 , Humanos , Metilmetanosulfonato/farmacología , Mutación/genética , Oxidación-Reducción , Péptidos/metabolismo , Polirribosomas/metabolismo , Agregado de Proteínas , Quinolonas/metabolismo , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/efectos de los fármacos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
11.
Nat Commun ; 10(1): 5774, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31852903

RESUMEN

Translation initiation is a major rate-limiting step for protein synthesis. However, recent studies strongly suggest that the efficiency of protein synthesis is additionally regulated by multiple factors that impact the elongation phase. To assess the influence of early elongation on protein synthesis, we employed a library of more than 250,000 reporters combined with in vitro and in vivo protein expression assays. Here we report that the identity of the amino acids encoded by codons 3 to 5 impact protein yield. This effect is independent of tRNA abundance, translation initiation efficiency, or overall mRNA structure. Single-molecule measurements of translation kinetics revealed pausing of the ribosome and aborted protein synthesis on codons 4 and 5 of distinct amino acid and nucleotide compositions. Finally, introduction of preferred sequence motifs only at specific codon positions improves protein synthesis efficiency for recombinant proteins. Collectively, our data underscore the critical role of early elongation events in translational control of gene expression.


Asunto(s)
Codón/genética , Extensión de la Cadena Peptídica de Translación/genética , Ribosomas/metabolismo , Aminoácidos/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Biblioteca de Genes , Genes Reporteros/genética , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Nucleótidos/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Proteínas RGS/genética , Proteínas RGS/metabolismo , ARN de Transferencia/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Imagen Individual de Molécula
12.
J Biol Chem ; 294(41): 15158-15171, 2019 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-31439666

RESUMEN

Similar to many other biological molecules, RNA is vulnerable to chemical insults from endogenous and exogenous sources. Noxious agents such as reactive oxygen species or alkylating chemicals have the potential to profoundly affect the chemical properties and hence the function of RNA molecules in the cell. Given the central role of RNA in many fundamental biological processes, including translation and splicing, changes to its chemical composition can have a detrimental impact on cellular fitness, with some evidence suggesting that RNA damage has roles in diseases such as neurodegenerative disorders. We are only just beginning to learn about how cells cope with RNA damage, with recent studies revealing the existence of quality-control processes that are capable of recognizing and degrading or repairing damaged RNA. Here, we begin by reviewing the most abundant types of chemical damage to RNA, including oxidation and alkylation. Focusing on mRNA damage, we then discuss how alterations to this species of RNA affect its function and how cells respond to these challenges to maintain proteostasis. Finally, we briefly discuss how chemical damage to noncoding RNAs such as rRNA, tRNA, small nuclear RNA, and small nucleolar RNA is likely to affect their function.


Asunto(s)
Células/metabolismo , ARN/genética , Animales , Células/citología , Humanos , ARN/metabolismo
13.
Nucleic Acids Res ; 47(18): 9857-9870, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31400119

RESUMEN

Of the four bases, guanine is the most susceptible to oxidation, which results in the formation of 8-oxoguanine (8-oxoG). In protein-free DNA, 8-oxodG adopts the syn conformation more frequently than the anti one. In the syn conformation, 8-oxodG base pairs with dA. The equilibrium between the anti and syn conformations of the adduct are known to be altered by the enzyme recognizing 8-oxodG. We previously showed that 8-oxoG in mRNA severely disrupts tRNA selection, but the underlying mechanism for these effects was not addressed. Here, we use miscoding antibiotics and ribosome mutants to probe how 8-oxoG interacts with the tRNA anticodon in the decoding center. Addition of antibiotics and introduction of error-inducing mutations partially suppressed the effects of 8-oxoG. Under these conditions, rates and/or endpoints of peptide-bond formation for the cognate (8-oxoG•C) and near-cognate (8-oxoG•A) aminoacyl-tRNAs increased. In contrast, the antibiotics had little effect on other mismatches, suggesting that the lesion restricts the nucleotide from forming other interactions. Our findings suggest that 8-oxoG predominantly adopts the syn conformation in the A site. However, its ability to base pair with adenosine in this conformation is not sufficient to promote the necessary structural changes for tRNA selection to proceed.


Asunto(s)
Emparejamiento Base/genética , Guanosina/análogos & derivados , Conformación de Ácido Nucleico , Ribosomas/genética , Antibacterianos/farmacología , Anticodón/química , Anticodón/genética , Daño del ADN/genética , Escherichia coli/genética , Guanina/química , Guanosina/química , Guanosina/genética , Mutación/efectos de los fármacos , Oxidación-Reducción , ARN Mensajero/genética , ARN de Transferencia , Aminoacil-ARN de Transferencia/efectos de los fármacos , Ribosomas/química
14.
Cell Rep ; 28(7): 1679-1689.e4, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31412239

RESUMEN

During translation, an mRNA is typically occupied by multiple ribosomes sparsely distributed across the coding sequence. This distribution, mediated by slow rates of initiation relative to elongation, ensures that they rarely collide with each other, but given the stochastic nature of protein synthesis, collision events do occur. Recent work from our lab suggested that collisions signal for mRNA degradation through no-go decay (NGD). We have explored the impact of stalling on ribosome function when NGD is compromised and found it to result in +1 frameshifting. We used reporters that limit the number of ribosomes on a transcript to show that +1 frameshifting is induced through ribosome collision in yeast and bacteria. Furthermore, we observe a positive correlation between ribosome density and frameshifting efficiency. It is thus tempting to speculate that NGD, in addition to its role in mRNA quality control, evolved to cope with stochastic collision events to prevent deleterious frameshifting events.


Asunto(s)
Sistema de Lectura Ribosómico , Biosíntesis de Proteínas , Estabilidad del ARN , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sistemas de Lectura Abierta , Control de Calidad , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ribosomas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
EMBO J ; 38(5)2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30770343

RESUMEN

Ribosome stalling triggers no-go decay (NGD) and ribosome-associated quality control (RQC) pathways to rapidly degrade the aberrant mRNA and the incomplete nascent peptide, respectively. Two recent studies in yeast and mammalian systems reveal the importance of stalling-induced ribosomal protein ubiquitination by Hel2/ZNF598 for both NGD and RQC The studies also structurally explain how collided ribosomes generate a unique interface not present in monosomes, which can be recognized by Hel2/ZNF598 ubiquitin ligases.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Ubiquitina , Animales , Biosíntesis de Proteínas , Ribosomas , Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas , Ubiquitinación
16.
FASEB Bioadv ; 1(7): 404-414, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32095781

RESUMEN

The orphan small nucleolar RNA (snoRNA) ACA11 is overexpressed as a result of the t(4;14) chromosomal translocation in multiple myeloma (MM), increases reactive oxygen species, and drives cell proliferation. Like other snoRNAs, ACA11 is predominantly localized to a sub-nuclear organelle, the nucleolus. We hypothesized that increased ACA11 expression would increase ribosome biogenesis and protein synthesis. We found that ACA11 overexpression in MM cells increased nucleolar area and number as well as silver-binding nucleolar organizing regions (AgNORs). Supporting these data, samples from t(4;14)-positive patients had higher AgNORs scores than t(4;14)-negative samples. ACA11 also upregulated ribosome production, pre-47S rRNA synthesis, and protein synthesis in a ROS-dependent manner. Lastly, ACA11 overexpression enhanced the response to proteasome inhibitor in MM cells, while no effect was found in response to high doses of melphalan. Together, these data demonstrate that ACA11 stimulates ribosome biogenesis and influences responses to chemotherapy. ACA11 may be a useful target to individualize the treatment for t(4;14)-positive myeloma patients.

17.
PLoS Genet ; 14(11): e1007818, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30475795

RESUMEN

No-go Decay (NGD) is a process that has evolved to deal with stalled ribosomes resulting from structural blocks or aberrant mRNAs. The process is distinguished by an endonucleolytic cleavage prior to degradation of the transcript. While many of the details of the pathway have been described, the identity of the endonuclease remains unknown. Here we identify residues of the small subunit ribosomal protein Rps3 that are important for NGD by affecting the cleavage reaction. Mutation of residues within the ribosomal entry tunnel that contact the incoming mRNA leads to significantly reduced accumulation of cleavage products, independent of the type of stall sequence, and renders cells sensitive to damaging agents thought to trigger NGD. These phenotypes are distinct from those seen in combination with other NGD factors, suggesting a separate role for Rps3 in NGD. Conversely, ribosomal proteins ubiquitination is not affected by rps3 mutations, indicating that upstream ribosome quality control (RQC) events are not dependent on these residues. Together, these results suggest that Rps3 is important for quality control on the ribosome and strongly supports the notion that the ribosome itself plays a central role in the endonucleolytic cleavage reaction during NGD.


Asunto(s)
Estabilidad del ARN , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Genes Fúngicos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Extensión de la Cadena Peptídica de Translación , Conformación Proteica , ARN de Hongos/genética , ARN Mensajero/genética , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Pequeñas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Ubiquitinación
18.
Proc Natl Acad Sci U S A ; 115(29): E6731-E6740, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29967153

RESUMEN

During translation, the ribosome plays an active role in ensuring that mRNA is decoded accurately and rapidly. Recently, biochemical studies have also implicated certain accessory factors in maintaining decoding accuracy. However, it is currently unclear whether the mRNA itself plays an active role in the process beyond its ability to base pair with the tRNA. Structural studies revealed that the mRNA kinks at the interface of the P and A sites. A magnesium ion appears to stabilize this structure through electrostatic interactions with the phosphodiester backbone of the mRNA. Here we examined the role of the kink structure on decoding using a well-defined in vitro translation system. Disruption of the kink structure through site-specific phosphorothioate modification resulted in an acute hyperaccurate phenotype. We measured rates of peptidyl transfer for near-cognate tRNAs that were severely diminished and in some instances were almost 100-fold slower than unmodified mRNAs. In contrast to peptidyl transfer, the modifications had little effect on GTP hydrolysis by elongation factor thermal unstable (EF-Tu), suggesting that only the proofreading phase of tRNA selection depends critically on the kink structure. Although the modifications appear to have no effect on typical cognate interactions, peptidyl transfer for a tRNA that uses atypical base pairing is compromised. These observations suggest that the kink structure is important for decoding in the absence of Watson-Crick or G-U wobble base pairing at the third position. Our findings provide evidence for a previously unappreciated role for the mRNA backbone in ensuring uniform decoding of the genetic code.


Asunto(s)
Conformación de Ácido Nucleico , Factor Tu de Elongación Peptídica/química , Biosíntesis de Proteínas , ARN Mensajero/química , ARN de Transferencia/química , Ribosomas/química , Sistema Libre de Células/química , Sistema Libre de Células/metabolismo , Factor Tu de Elongación Peptídica/metabolismo , ARN Mensajero/metabolismo , ARN de Transferencia/metabolismo , Ribosomas/metabolismo , Electricidad Estática
19.
Mol Cell ; 68(2): 361-373.e5, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-28943311

RESUMEN

No-go decay (NGD) is a eukaryotic quality control mechanism that evolved to cope with translational arrests. The process is characterized by an endonucleolytic cleavage near the stall sequence, but the mechanistic details are unclear. Our analysis of cleavage sites indicates that cleavage requires multiple ribosomes on the mRNA. We also show that reporters harboring stall sequences near the initiation codon, which cannot accommodate multiple ribosomes, are not subject to NGD. Consistent with our model, we uncover an inverse correlation between ribosome density per mRNA and cleavage efficiency. Furthermore, promoting global ribosome collision in vivo resulted in ubiquitination of ribosomal proteins, suggesting that collision is sensed by the cell to initiate downstream quality control processes. Collectively, our data suggest that NGD and subsequent quality control are triggered by ribosome collision. This model provides insight into the regulation of quality control processes and the manner by which they reduce off-target effects.


Asunto(s)
Estabilidad del ARN/fisiología , ARN de Hongos/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , ARN de Hongos/genética , Ribosomas/genética , Saccharomyces cerevisiae/genética
20.
Artículo en Inglés | MEDLINE | ID: mdl-27193249

RESUMEN

Quality control processes are widespread and play essential roles in detecting defective molecules and removing them in order to maintain organismal fitness. Aberrant messenger RNA (mRNA) molecules, unless properly managed, pose a significant hurdle to cellular proteostasis. Often mRNAs harbor premature stop codons, possess structures that present a block to the translational machinery, or lack stop codons entirely. In eukaryotes, the three cytoplasmic mRNA-surveillance processes, nonsense-mediated decay (NMD), no-go decay (NGD), and nonstop decay (NSD), evolved to cope with these aberrant mRNAs, respectively. Nonstop mRNAs and mRNAs that inhibit translation elongation are especially problematic as they sequester valuable ribosomes from the translating ribosome pool. As a result, in addition to RNA degradation, NSD and NGD are intimately coupled to ribosome rescue in all domains of life. Furthermore, protein products produced from all three classes of defective mRNAs are more likely to malfunction. It is not surprising then that these truncated nascent protein products are subject to degradation. Over the past few years, many studies have begun to document a central role for the ribosome in initiating the RNA and protein quality control processes. The ribosome appears to be responsible for recognizing the target mRNAs as well as for recruiting the factors required to carry out the processes of ribosome rescue and nascent protein decay. WIREs RNA 2017, 8:e1366. doi: 10.1002/wrna.1366 For further resources related to this article, please visit the WIREs website.


Asunto(s)
Extensión de la Cadena Peptídica de Translación , Terminación de la Cadena Péptídica Traduccional , Biosíntesis de Proteínas , ARN Mensajero/genética , Ribosomas/genética , Animales , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...