Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 8805, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37258696

RESUMEN

We demonstrate a fiber Bragg grating (FBG) strain interrogator based on a scattering medium to generate stable and deterministic speckle patterns, calibrated with applied strain, which are highly dependent on the FBG back-reflection spectral components. The strong wavelength-dependency of speckle patterns was previously used for high resolution wavemeters where scattering effectively folds the optical path, but instability makes practical realization of such devices difficult. Here, a new approach is demonstrated by utilizing femtosecond laser-written scatterers inside flat optical fiber, to enhance mechanical stability. By inscribing 15 planes of pseudo-randomized nanovoids (714 [Formula: see text] 500 voids per plane) as a 3D array in a 1 [Formula: see text] 0.7 [Formula: see text] 0.16 mm volume, the intrinsic stability and compactness of the device was improved. Operating as a wavemeter, it remained stable for at least 60 h with 45 pm resolution over the wavelength range of 1040-1056 nm. As a reflection mode FBG interrogator, after calibrating speckle patterns by applying tensile strain to the FBG, the device is capable of detecting microstrain changes in the range of 0-200 [Formula: see text] with a standard error of 4 [Formula: see text], limited by the translation stage step size. All these characteristics make it an interesting technology for filling the niche of low-cost, high-resolution wavemeters and interrogators which offer the best available trade-off between resolution, compactness, price and stability.

2.
Sensors (Basel) ; 22(12)2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35746129

RESUMEN

The key challenge for a lab-on-chip (LOC) device is the seamless integration of key elements of biosensing and actuation (e.g., biosampling or microfluidics), which are conventionally realised using different technologies. In this paper, we report a convenient and efficient LOC platform fabricated using an electrode patterned flexible printed circuit board (FPCB) pressed onto a piezoelectric film coated substrate, which can implement multiple functions of both acoustofluidics using surface acoustic waves (SAWs) and sensing functions using electromagnetic metamaterials, based on the same electrode on the FPCB. We explored the actuation capability of the integrated structure by pumping a sessile droplet using SAWs in the radio frequency range. We then investigated the hybrid sensing capability (including both physical and chemical ones) of the structure employing the concept of electromagnetic split-ring resonators (SRRs) in the microwave frequency range. The originality of this sensing work is based on the premise that the proposed structure contains three completely decoupled resonant frequencies for sensing applications and each resonance has been used as a separate physical or a chemical sensor. This feature compliments the acoustofluidic capability and is well-aligned with the goals set for a successful LOC device.


Asunto(s)
Microfluídica , Sonido , Ondas de Radio , Vibración
3.
ACS Sens ; 5(8): 2563-2569, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32686395

RESUMEN

Versatile, in situ sensing and continuous monitoring capabilities are critically needed, but challenging, for components made of solid woven carbon fibers in aerospace, electronics, and medical applications. In this work, we proposed a unique concept of integrated sensing technology on woven carbon fibers through integration of thin-film surface acoustic wave (SAW) technology and electromagnetic metamaterials, with capabilities of noninvasive, in situ, and continuous monitoring of environmental parameters and biomolecules wirelessly. First, we fabricated composite materials using a three-layer composite design, in which the woven carbon fiber cloth was first coated with a polyimide (PI) layer followed by a layer of ZnO film. Integrated SAW and metamaterials devices were then fabricated on this composite structure. The temperature of the functional area of the device could be controlled precisely using the SAW devices, which could provide a proper incubation environment for biosampling processes. As an ultraviolet light sensor, the SAW device could achieve a good sensitivity of 56.86 ppm/(mW/cm2). On the same integrated platform, an electromagnetic resonator based on the metamaterials was demonstrated to work as a glucose concentration monitor with a sensitivity of 0.34 MHz/(mg/dL).


Asunto(s)
Electrónica , Sonido , Fibra de Carbono , Monitoreo Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...