Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1345478, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38559346

RESUMEN

Antimicrobial resistance is one of the largest medical challenges because of the rising frequency of opportunistic human microbial infections across the globe. This study aimed to extract chitosan from the exoskeletons of dead bees and load it with bee venom (commercially available as Apitoxin [Api]). Then, the ionotropic gelation method would be used to form nanoparticles that could be a novel drug-delivery system that might eradicate eight common human pathogens (i.e., two fungal and six bacteria strains). It might also be used to treat the human colon cancer cell line (Caco2 ATCC ATP-37) and human liver cancer cell line (HepG2ATCC HB-8065) cancer cell lines. The x-ray diffraction (XRD), Fourier transform infrared (FTIR), and dynamic light scattering (DLS) properties, ζ-potentials, and surface appearances of the nanoparticles were evaluated by transmission electron microscopy (TEM). FTIR and XRD validated that the Api was successfully encapsulated in the chitosan nanoparticles (ChB NPs). According to the TEM, the ChB NPs and the ChB NPs loaded with Apitoxin (Api@ChB NPs) had a spherical shape and uniform size distribution, with non-aggregation, for an average size of approximately 182 and 274 ± 3.8 nm, respectively, and their Zeta potential values were 37.8 ± 1.2 mV and - 10.9 mV, respectively. The Api@ChB NPs had the greatest inhibitory effect against all tested strains compared with the ChB NPs and Api alone. The minimum inhibitory concentrations (MICs) of the Api, ChB NPs, and Api@ChB NPs were evaluated against the offer mentioned colony forming units (CFU/mL), and their lowest MIC values were 30, 25, and 12.5 µg mL-1, respectively, against Enterococcus faecalis. Identifiable morphological features of apoptosis were observed by 3 T3 Phototox software after Api@ChB NPs had been used to treat the normal Vero ATCC CCL-81, Caco2 ATCC ATP-37, and HepG2 ATCC HB-8065 cancer cell lines for 24 h. The morphological changes were clear in a concentration-dependent manner, and the ability of the cells was 250 to 500 µg mL-1. These results revealed that Api@ChB NPs may be a promising natural nanotreatment for common human pathogens.

2.
Environ Sci Pollut Res Int ; 31(17): 25192-25201, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462566

RESUMEN

Bee pollen is a healthy product with a good nutritional profile and therapeutic properties. Its high moisture content, however, promotes the growth of bacteria, molds, and yeast during storage commonly result in product degradation. Therefore, the aim of this study is to assess the effectiveness of gamma irradiation (GI) and ozone (OZ) as bee pollen preservation methods for longer storage time, as well as whether they are influenced by pollen species. To do that, GI at a dosage of 2.5, 5.0, and 7.5 kGy was applied at a rate of 0.68 kGy/h and OZ application at a concentration of 0.01, 0.02, and 0.03 g/m3 was applied for one time for 6 h, to Egyptian clover and maize bee pollen, then stored at ambient temperature for 6 months. We then determined the total phenolic content (TPC) and antioxidant activity of treated and non-treated pollen samples at 0, 3, and 6 months of storage. Total bacteria, mold, and yeast count were also evaluated at 0, 2, 4, and 6 months. Statistical analyses revealed that, TPC, antioxidant, and microbial load of both clover and maize pollen samples were significantly (p < 0.05) affected by both treatment and storage time and their interaction. Both methods were extremely effective at preserving the antioxidant properties of pollen samples after 6 months of storage at room temperature. Furthermore, the highest concentrations of both GI and OZ applications completely protected pollen samples from mold and yeast while decreasing bacterial contamination. GI at the highest dose (7.5 KGy) was found to be more effective than other GI doses and OZ application in preserving biologically active compounds and lowering the microbial count of pollen samples for 6 months. As a result, we advise beekeepers to use GI at this dose for longer-term storage.


Asunto(s)
Antioxidantes , Ozono , Abejas , Animales , Saccharomyces cerevisiae , Fenoles , Hongos , Polen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA