Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pathogens ; 12(4)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37111499

RESUMEN

BACKGROUND: Babesiosis, an intra-erythrocytic protozoan disease, is an emerging zoonotic parasitic disease worldwide. Cholesterol levels are correlated with severe infections, such as sepsis and COVID-19, and anecdotal reports suggest that high-density lipoprotein (HDL) cholesterol declines during acute babesiosis. Our aim was to describe the cholesterol levels in patients with acute babesiosis diagnosed in an endemic area in New York, hypothesizing that HDL levels correlate with the severity of infection. METHODS: We reviewed the medical records of adult patients with babesiosis diagnosed by identification of Babesia parasites on a thin blood smear and confirmed by polymerase chain reaction from 2013 to 2018, who also had available a lipid profile drawn at the time of clinical presentation. Additional lipid profile levels were considered as "baseline" if they were drawn within 2 months before or after the infection as part of routine care. RESULTS: A total of 39 patients with babesiosis had a lipid profile drawn on presentation. The patients were divided into two groups for comparison based on the treating physician's clinical decision: 33 patients who were admitted to the hospital and 8 patients who were evaluated as outpatients. A history of hypertension was more common in admitted patients (37% vs. 17%, p = 0.02). The median levels of low-density lipoprotein (LDL) and HDL were significantly reduced in admitted patients compared to non-admitted patients (46 vs. 76 mg/dL, p = 0.04; and 9 vs. 28.5 mg/dL, p = 0.03, respectively). In addition, LDL and HDL levels returned to baseline values following resolution of acute babesiosis. CONCLUSION: LDL and HDL levels are significantly reduced during acute babesiosis, suggesting that cholesterol depletion may predict disease severity. Pathogen and host factors may contribute to a reduction in serum cholesterol levels during acute babesiosis.

2.
IDCases ; 29: e01570, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35855942

RESUMEN

In the Northeastern United States, a nationally notifiable emerging infectious disease caused by a protozoan infecting erythrocytes is endemic. Transmitted by a deer tick, Ixodes scapularis, this protozoan, Babesia microti, has a complex life cycle including multiple mammalian hosts with humans affected as a dead end reservoir. Although humans are not necessary for the survival of this protozoan, if human erythrocytes are infected by it, especially in a host that is immunocompromised, devastating clinical illness with a significant risk of mortality occurs. Erythrocytic infection of the human host causes many pathogenic changes within the human body, leading to red blood cell destruction and release of pro inflammatory cytokines (3). This pro-inflammatory cascade can very rarely lead to a cycle of further erythrocytic destruction through development of a rare syndrome with high mortality, hemagophagocytic lymphohistocytosis (HLH), which requires early recognition and diagnosis for treatment. This case discusses infection in an immunocompromised host with Babesiosis with complications of HLH and co-infection with Lyme disease requiring multiple diagnostic and therapeutic decisions.

3.
Viruses ; 14(5)2022 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-35632677

RESUMEN

Immunocompromised individuals are at risk of prolonged SARS-CoV-2 infection due to weaker immunity, co-morbidities, and lowered vaccine effectiveness, which may evolve highly mutated variants of SARS-CoV-2. Nonetheless, limited data are available on the immune responses elicited by SARS-CoV-2 infection, reinfections, and vaccinations with emerging variants in immunocompromised patients. We analyzed clinical samples that were opportunistically collected from eight immunocompromised individuals for mutations in SARS-CoV-2 genomes, neutralizing antibody (NAb) titers against different SARS-CoV-2 variants, and the identification of immunoreactive epitopes using a high-throughput coronavirus peptide array. The viral genome analysis revealed two SARS-CoV-2 variants (20A from a deceased patient and an Alpha variant from a recovered patient) with an eight amino-acid (aa) deletion within the N-terminal domain (NTD) of the surface glycoprotein. A higher NAb titer was present against the prototypic USA/WA1/2020 strain in vaccinated immunocompromised patients. NAb titer was absent against the Omicron variant and the cultured virus of the 20A variant with eight aa deletions in non-vaccinated patients. Our data suggest that fatal SARS-CoV-2 infections may occur in immunocompromised individuals even with high titers of NAb post-vaccination. Moreover, persistent SARS-CoV-2 infection may lead to the emergence of newer variants with additional mutations favoring the survival and fitness of the pathogen that include deletions in NAb binding sites in the SARS-CoV-2 surface glycoprotein.


Asunto(s)
COVID-19 , Vacunas Virales , Humanos , Huésped Inmunocomprometido , Glicoproteínas de Membrana , SARS-CoV-2/genética
4.
Am J Emerg Med ; 51: 1-5, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34637995

RESUMEN

BACKGROUND: Many patients with Coronavirus disease-2019 (Covid-19) present with radiological evidence of pneumonia. Because it is difficult to determine co-existence of bacterial pneumonia, many of these patients are initially treated with antibiotics. We compared the rates of bacterial infections and mortality in Covid-19 patients with pulmonary infiltrates versus patients diagnosed with 'pneumonia' the year previously. METHODS: We conducted a medical record review of patients admitted with Covid-19 and a pulmonary infiltrate and compared them with patients diagnosed with pneumonia admitted in the prior year before the pandemic. Data abstracted included baseline demographics, comorbidities, signs and symptoms, laboratory and microbiological results, and imaging findings. Outcomes were bacterial infections and mortality. Patients presenting with and without Covid-19 were compared using univariable and multivariable analyses. RESULTS: There were 1398 and 1001 patients admitted through the emergency department (ED) with and without Covid-19 respectively. Compared with non-Covid-19 patients, those with Covid-19 were younger (61±18 vs. 65±25 years, P < 0.001) and had a lower Charlson Comorbidity Index (0.7 vs. 1.2, P < 0.001). Bacterial infections were present in fewer Covid-19 than non-Covid-19 patients (8% vs. 13%, P < 0.001), and most infections in Covid-19 were nosocomial as opposed to community acquired in non-Covid-19 patients. CXR was more often read as abnormal and with bilateral infiltrates in patients with Covid-19 (82% vs. 70%, P < 0.001 and 81% vs. 48%, P < 0.001, respectively). Mortality was higher in patients with Covid-19 vs. those without (15% vs. 9%, P < 0.001). Multivariable predictors (OR [95%CI]) of mortality were age (1.04 [1.03-1.05]/year), tachypnea (1.55 [1.12-2.14]), hypoxemia (2.98 [2.04-4.34]), and bacterial infection (2.80 [1.95-4.02]). Compared with non-Covid-19 patients with pneumonia, patients with Covid-19 were more likely to die (2.68 [1.97-3.63]). CONCLUSIONS: The rate of bacterial infections is lower in Covid-19 patients with pulmonary infiltrates compared with patients diagnosed with pneumonia prior to the pandemic and most are nosocomial. Mortality was higher in Covid-19 than non-Covid-19 patients even after adjusting for age, tachypnea, hypoxemia, and bacterial infection.


Asunto(s)
Infecciones Bacterianas/epidemiología , COVID-19/mortalidad , Coinfección/epidemiología , Neumonía/mortalidad , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Comorbilidad , Infección Hospitalaria/epidemiología , Femenino , Hospitalización , Humanos , Hipoxia/epidemiología , Masculino , Persona de Mediana Edad , Missouri/epidemiología , Estudios Retrospectivos , Factores de Riesgo , Taquipnea/epidemiología
5.
Nat Microbiol ; 2: 16232, 2016 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-27918526

RESUMEN

Mycobacterium tuberculosis (Mtb) establishes a persistent infection, despite inducing antigen-specific T-cell responses. Although T cells arrive at the site of infection, they do not provide sterilizing immunity. The molecular basis of how Mtb impairs T-cell function is not clear. Mtb has been reported to block major histocompatibility complex class II (MHC-II) antigen presentation; however, no bacterial effector or host-cell target mediating this effect has been identified. We recently found that Mtb EsxH, which is secreted by the Esx-3 type VII secretion system, directly inhibits the endosomal sorting complex required for transport (ESCRT) machinery. Here, we showed that ESCRT is required for optimal antigen processing; correspondingly, overexpression and loss-of-function studies demonstrated that EsxH inhibited the ability of macrophages and dendritic cells to activate Mtb antigen-specific CD4+ T cells. Compared with the wild-type strain, the esxH-deficient strain induced fivefold more antigen-specific CD4+ T-cell proliferation in the mediastinal lymph nodes of mice. We also found that EsxH undermined the ability of effector CD4+ T cells to recognize infected macrophages and clear Mtb. These results provide a molecular explanation for how Mtb impairs the adaptive immune response.


Asunto(s)
Proteínas Bacterianas/metabolismo , Linfocitos T CD4-Positivos/inmunología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Interacciones Huésped-Patógeno , Evasión Inmune , Activación de Linfocitos , Mycobacterium tuberculosis/inmunología , Animales , Proteínas Bacterianas/genética , Células Dendríticas/inmunología , Modelos Animales de Enfermedad , Expresión Génica , Técnicas de Inactivación de Genes , Macrófagos/inmunología , Ratones Endogámicos C57BL , Tuberculosis/microbiología , Tuberculosis/patología
6.
J Immunol ; 195(3): 1202-17, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26109647

RESUMEN

Store-operated Ca(2+) entry (SOCE) through Ca(2+) release-activated Ca(2+) (CRAC) channels is essential for immunity to infection. CRAC channels are formed by ORAI1 proteins in the plasma membrane and activated by stromal interaction molecule (STIM)1 and STIM2 in the endoplasmic reticulum. Mutations in ORAI1 and STIM1 genes that abolish SOCE cause severe immunodeficiency with recurrent infections due to impaired T cell function. SOCE has also been observed in cells of the innate immune system such as macrophages and dendritic cells (DCs) and may provide Ca(2+) signals required for their function. The specific role of SOCE in macrophage and DC function, as well as its contribution to innate immunity, however, is not well defined. We found that nonselective inhibition of Ca(2+) signaling strongly impairs many effector functions of bone marrow-derived macrophages and bone marrow-derived DCs, including phagocytosis, inflammasome activation, and priming of T cells. Surprisingly, however, macrophages and DCs from mice with conditional deletion of Stim1 and Stim2 genes, and therefore complete inhibition of SOCE, showed no major functional defects. Their differentiation, FcR-dependent and -independent phagocytosis, phagolysosome fusion, cytokine production, NLRP3 inflammasome activation, and their ability to present Ags to activate T cells were preserved. Our findings demonstrate that STIM1, STIM2, and SOCE are dispensable for many critical effector functions of macrophages and DCs, which has important implications for CRAC channel inhibition as a therapeutic strategy to suppress pathogenic T cells while not interfering with myeloid cell functions required for innate immunity.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio/inmunología , Células Dendríticas/inmunología , Macrófagos/inmunología , Glicoproteínas de Membrana/metabolismo , Animales , Presentación de Antígeno/genética , Presentación de Antígeno/inmunología , Proteínas Reguladoras de la Apoptosis/inmunología , Calcio/metabolismo , Canales de Calcio/genética , Proteínas de Unión al Calcio/inmunología , Proteínas Portadoras/inmunología , Diferenciación Celular/inmunología , Células Dendríticas/citología , Retículo Endoplásmico/metabolismo , Humanos , Inmunidad Innata/inmunología , Inflamasomas/inmunología , Activación de Linfocitos/inmunología , Macrófagos/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína con Dominio Pirina 3 de la Familia NLR , Proteína ORAI1 , Fagocitosis/inmunología , Inmunodeficiencia Combinada Grave/genética , Molécula de Interacción Estromal 1 , Molécula de Interacción Estromal 2 , Linfocitos T/inmunología
7.
PLoS Pathog ; 9(10): e1003734, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24204276

RESUMEN

Mycobacterium tuberculosis (Mtb) disrupts anti-microbial pathways of macrophages, cells that normally kill bacteria. Over 40 years ago, D'Arcy Hart showed that Mtb avoids delivery to lysosomes, but the molecular mechanisms that allow Mtb to elude lysosomal degradation are poorly understood. Specialized secretion systems are often used by bacterial pathogens to translocate effectors that target the host, and Mtb encodes type VII secretion systems (TSSSs) that enable mycobacteria to secrete proteins across their complex cell envelope; however, their cellular targets are unknown. Here, we describe a systematic strategy to identify bacterial virulence factors by looking for interactions between the Mtb secretome and host proteins using a high throughput, high stringency, yeast two-hybrid (Y2H) platform. Using this approach we identified an interaction between EsxH, which is secreted by the Esx-3 TSSS, and human hepatocyte growth factor-regulated tyrosine kinase substrate (Hgs/Hrs), a component of the endosomal sorting complex required for transport (ESCRT). ESCRT has a well-described role in directing proteins destined for lysosomal degradation into intraluminal vesicles (ILVs) of multivesicular bodies (MVBs), ensuring degradation of the sorted cargo upon MVB-lysosome fusion. Here, we show that ESCRT is required to deliver Mtb to the lysosome and to restrict intracellular bacterial growth. Further, EsxH, in complex with EsxG, disrupts ESCRT function and impairs phagosome maturation. Thus, we demonstrate a role for a TSSS and the host ESCRT machinery in one of the central features of tuberculosis pathogenesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Mycobacterium tuberculosis/patogenicidad , Fosfoproteínas/metabolismo , Tuberculosis/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Pared Celular/genética , Pared Celular/inmunología , Pared Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/inmunología , Endosomas/genética , Endosomas/inmunología , Endosomas/metabolismo , Células HEK293 , Humanos , Membranas Intracelulares/inmunología , Membranas Intracelulares/metabolismo , Lisosomas/genética , Lisosomas/inmunología , Lisosomas/metabolismo , Lisosomas/microbiología , Fusión de Membrana/genética , Fusión de Membrana/inmunología , Ratones , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/inmunología , Mycobacterium tuberculosis/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/inmunología , Tuberculosis/genética , Tuberculosis/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...