Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int Immunopharmacol ; 122: 110531, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37437434

RESUMEN

Autoimmune diseases are complex, chronic inflammatory conditions initiated by the loss of immunological tolerance to self-antigens. Nowadays, there is no effective and useful therapy for autoimmune diseases, and the existing medications have some limitations due to their nonspecific targets and side effects. During the last few decades, it has been established that mesenchymal stem cells (MSCs) have immunomodulatory functions. It is proposed that MSCs can exert an important therapeutic effect on autoimmune disorders. In parallel with these findings, several investigations have shown that MSCs alleviate autoimmune diseases. Intriguingly, the results of studies have demonstrated that the effective roles of MSCs in autoimmune diseases do not depend on direct intercellular communication but on their ability to release a wide spectrum of paracrine mediators such as growth factors, cytokines and extracellular vehicles (EVs). EVs that range from 50 to 5,000 nm were produced by almost any cell type, and these nanoparticles participate in homeostasis and intercellular communication via the transfer of a broad range of biomolecules such as modulatory proteins, nucleic acids (DNA and RNA), lipids, cytokines, and metabolites. EVs derived from MSCs display the exact properties of MSCs and can be safer and more beneficial than their parent cells. In this review, we will discuss the features of MSCs and their EVs, EVs biogenesis, and their cargos, and then we will highlight the existing discoveries on the impacts of EVs from MSCs on autoimmune diseases such as multiple sclerosis, arthritis rheumatic, inflammatory bowel disease, Type 1 diabetes mellitus, systemic lupus erythematosus, autoimmune liver diseases, Sjögren syndrome, and osteoarthritis, suggesting a potential alternative for autoimmune conditions therapy.


Asunto(s)
Enfermedades Autoinmunes , Vesículas Extracelulares , Células Madre Mesenquimatosas , Osteoartritis , Humanos , Vesículas Extracelulares/metabolismo , Enfermedades Autoinmunes/terapia , Enfermedades Autoinmunes/metabolismo , Osteoartritis/metabolismo , Células Madre Mesenquimatosas/metabolismo , Citocinas/metabolismo
2.
J Oleo Sci ; 69(11): 1427-1436, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-33055444

RESUMEN

This paper presents the results of a kinetic study performed between ninhydrin and a Ni(II) dipeptide complex under various conditions. The rate of formation of the imine adduct was measured spectrophotometrically both in plain aqueous media and in aqueous micellar media in which CTAB (cetyltrimethylammonium bromide) is used as the surfactant. These studies were carried out at pH 5 and over a temperature a range of 50 to 70°C. Studies were also conducted to elucidate the effect of some organic sodium salts on the rate of this reaction. In these studies, it was found that the formation of imine adduct followed a first-order kinetics with respect to [Ni(II)-Gly-Leu]+ in both aqueous and micellar medium. A fractional-order kinetics was observed with respect to ninhydrin, again in both aqueous and micellar media. Increase in the total concentration of CTAB from 0 to 40×10-3 mol dm-3 resulted in approximately two folds increase in the pseudo-first-order rate constant (kψ). The rate constant (kΨ) in micellar medium first increased with increase in CTAB concentration, reached a maximum value, and finally, with further increase in CTAB concentration, a decreasing effect was observed. Quantitative kinetic analysis of kψ-[CTAB] data was performed on the basis of the pseudo-phase model of the micelles. The rate profile in presence of CTAB suggests a cooperative effect in the enhanced formation of the imine adduct as is commonly found in enzyme catalyzed reactions. Addition of organic sodium salts (such as benzoate, salicylate and tosylate) enhanced the rate at lower concentrations but rates start to decrease at higher concentrations. This suggests that tightly binding organic counter-anions were the most effective. Viscosity of the reaction media seems to affect the kinetic behavior in micellar media.


Asunto(s)
Cetrimonio/química , Dipéptidos/química , Iminas/química , Metales/química , Ninhidrina/química , Tensoactivos/química , Aniones/química , Benzoatos/química , Catálisis , Concentración de Iones de Hidrógeno , Micelas , Fenómenos Químicos Orgánicos , Salicilatos/química , Espectrofotometría , Temperatura , Viscosidad , Agua/química
3.
J Nanosci Nanotechnol ; 11(5): 3834-42, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21780375

RESUMEN

Bioconjugation of quantum dots has resulted in a significant increase in resolution of biological fluorescent labeling. This intrinsic property of quantum dots can be utilized for sensitive detection of target analytes with high sensitivity; including pathogenic bacteria and cancer monitoring. The quantum dots and quantum dot doped silica nanoparticles exhibit prominent emission peaks when excited at 400 nm but on conjugation to model rabbit antigoat antibodies exhibit diminished intensity of emission peak at 600 nm. It shows that photoluminescence intensity of conjugated quantum dots and quantum dot doped silica nanoparticles could permit the detection of bioconjugation. Samples of conjugated and unconjugated quantum dots and quantum dot doped silica nanoparticles were subjected to enzyme linked immunosorbent assay for further confirmation of bioconjugation. In the present study ligand exchange, bioconjugation, fluorescence detection of bioconjugated quantum dots and quantum dot doped silica nanoparticles and further confirmation of bioconjugation by enzyme linked immunosorbent assay has been described.


Asunto(s)
Nanopartículas , Puntos Cuánticos , Ensayo de Inmunoadsorción Enzimática , Ligandos , Microscopía Electrónica de Transmisión , Dióxido de Silicio/química , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA