Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Methods ; 19(1): 4, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36653871

RESUMEN

Cassava is the most cultivated and consumed root crop in the world. One of the major constraints to the cassava value chain is the short shelf life of cassava storage roots which is primarily due to the so-called post-harvest physiological deterioration (PPD). The identification of natural sources of PPD tolerance represents a key approach to mitigating PPD losses by generating farmer- and industry-preferred cassava cultivars with prolonged shelf life. In the present study, a PPD assessment method was developed to screen for PPD tolerance in the cassava germplasm. The proposed PPD assessment method displayed a reduced rate of microbial infection and allowed a rapid and homogenous development of typical PPD symptoms in the cassava storage roots. We successfully used the PPD assessment method in combination with an image-based PPD scoring method to identify and characterize PPD tolerance in 28 cassava cultivars from the Indonesian cassava germplasm. Our analysis showed a significant and positive correlation between PPD score and dry matter content (r = 0.589-0.664, p-value < 0.001). Analysis of additional root parameters showed a significant and positive correlation between PPD scores at 2 days post-harvest (dph) and root length (r = 0.388, p-value < 0.05). Our analysis identified at least 4 cultivars displaying a significantly delayed onset of PPD symptoms as compared to the other selected cultivars. The availability of cassava cultivars contrasting for tolerance to PPD will be particularly instrumental to understanding the molecular mechanisms associated with delayed PPD in cassava roots.

2.
Plant Methods ; 14: 73, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30154909

RESUMEN

AIM: We report the construction of a Virus-Induced Gene Silencing (VIGS) vector and an agroinoculation protocol for gene silencing in cassava (Manihot esculenta Crantz) leaves and roots. The African cassava mosaic virus isolate from Nigeria (ACMV-[NOg]), which was initially cloned in a binary vector for agroinoculation assays, was modified for application as VIGS vector. The functionality of the VIGS vector was validated in Nicotiana benthamiana and subsequently applied in wild-type and transgenic cassava plants expressing the uidA gene under the control of the CaMV 35S promoter in order to facilitate the visualization of gene silencing in root tissues. VIGS vectors were targeted to the Mg2+-chelatase gene in wild type plants and both the coding and promoter sequences of the 35S::uidA transgene in transgenic plants to induce silencing. We established an efficient agro-inoculation method with the hyper-virulent Agrobacterium tumefaciens strain AGL1, which allows high virus infection rates. The method can be used as a low-cost and rapid high-throughput evaluation of gene function in cassava leaves, fibrous roots and storage roots. BACKGROUND: VIGS is a powerful tool to trigger transient sequence-specific gene silencing in planta. Gene silencing in different organs of cassava plants, including leaves, fibrous and storage roots, is useful for the analysis of gene function. RESULTS: We developed an African cassava mosaic virus-based VIGS vector as well as a rapid and efficient agro-inoculation protocol to inoculate cassava plants. The VIGS vector was validated by targeting endogenous genes from Nicotiana benthamiana and cassava as well as the uidA marker gene in transgenic cassava for visualization of gene silencing in cassava leaves and roots. CONCLUSIONS: The African cassava mosaic virus-based VIGS vector allows efficient and cost-effective inoculation of cassava for high-throughput analysis of gene function in cassava leaves and roots.

3.
Plant Mol Biol ; 94(1-2): 185-195, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28315989

RESUMEN

Cassava (Manihot esculenta Crantz) is a major world crop, whose storage roots provide food for over 800 million throughout the humid tropics. Despite many advantages as a crop, the development of cassava is seriously constrained by the rapid post-harvest physiological deterioration (PPD) of its roots that occurs within 24-72 h of harvest, rendering the roots unpalatable and unmarketable. PPD limits cassava's marketing possibilities in countries that are undergoing increased development and urbanisation due to growing distances between farms and consumers. The inevitable wounding of the roots caused by harvesting triggers an oxidative burst that spreads throughout the cassava root, together with the accumulation of secondary metabolites including phenolic compounds, of which the coumarin scopoletin (7-hydroxy-6-methoxy-2H-1-benzopyran-2-one) is the most abundant. Scopoletin oxidation yields a blue-black colour, which suggests its involvement in the discoloration observed during PPD. Feruloyl CoA 6'-hydroxylase is a controlling enzyme in the biosynthesis of scopoletin. The cassava genome contains a seven membered family of feruloyl CoA 6'-hydroxylase genes, four of which are expressed in the storage root and, of these, three were capable of functionally complementing Arabidopsis T-DNA insertion mutants in this gene. A RNA interference construct, designed to a highly conserved region of these genes, was used to transform cassava, where it significantly reduced feruloyl CoA 6'-hydroxylase gene expression, scopoletin accumulation and PPD symptom development. Collectively, our results provide evidence that scopoletin plays a major functional role in the development of PPD symptoms, rather than merely paralleling symptom development in the cassava storage root.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Manihot/enzimología , Oxigenasas de Función Mixta/metabolismo , Proteínas de Plantas/metabolismo , Escopoletina/metabolismo , Arabidopsis , Clonación Molecular , Almacenamiento de Alimentos , Manihot/genética , Manihot/metabolismo , Oxigenasas de Función Mixta/genética , Filogenia , Proteínas de Plantas/genética , Raíces de Plantas , Plantas Modificadas Genéticamente , Interferencia de ARN
4.
PLoS One ; 7(9): e45277, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23049780

RESUMEN

Cassava brown streak disease (CBSD) and cassava mosaic disease (CMD) are currently two major viral diseases that severely reduce cassava production in large areas of Sub-Saharan Africa. Natural resistance has so far only been reported for CMD in cassava. CBSD is caused by two virus species, Cassava brown streak virus (CBSV) and Ugandan cassava brown streak virus (UCBSV). A sequence of the CBSV coat protein (CP) highly conserved between the two virus species was used to demonstrate that a CBSV-CP hairpin construct sufficed to generate immunity against both viral species in the cassava model cultivar (cv. 60444). Most of the transgenic lines showed high levels of resistance under increasing viral loads using a stringent top-grafting method of inoculation. No viral replication was observed in the resistant transgenic lines and they remained free of typical CBSD root symptoms 7 month post-infection. To generate transgenic cassava lines combining resistance to both CBSD and CMD the hairpin construct was transferred to a CMD-resistant farmer-preferred Nigerian landrace TME 7 (Oko-Iyawo). An adapted protocol allowed the efficient Agrobacterium-based transformation of TME 7 and the regeneration of transgenic lines with high levels of CBSV-CP hairpin-derived small RNAs. All transgenic TME 7 lines were immune to both CBSV and UCBSV infections. Further evaluation of the transgenic TME 7 lines revealed that CBSD resistance was maintained when plants were co-inoculated with East African cassava mosaic virus (EACMV), a geminivirus causing CMD. The innovative combination of natural and engineered virus resistance in farmer-preferred landraces will be particularly important to reducing the increasing impact of cassava viral diseases in Africa.


Asunto(s)
Begomovirus/fisiología , Manihot/inmunología , Enfermedades de las Plantas/inmunología , Plantas Modificadas Genéticamente , Potyviridae/fisiología , ARN Viral/genética , Proteínas Virales/genética , África del Sur del Sahara , Agrobacterium/genética , Begomovirus/patogenicidad , Ingeniería Genética , Secuencias Invertidas Repetidas/genética , Manihot/genética , Manihot/virología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Inmunidad de la Planta/genética , Potyviridae/patogenicidad , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Análisis de Secuencia de ADN , Transformación Genética , Proteínas Virales/química
5.
Plant Methods ; 8(1): 24, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22784378

RESUMEN

Recent progress in cassava transformation has allowed the robust production of transgenic cassava even under suboptimal plant tissue culture conditions. The transformation protocol has so far been used mostly for the cassava model cultivar 60444 because of its good regeneration capacity of embryogenic tissues. However, for deployment and adoption of transgenic cassava in the field it is important to develop robust transformation methods for farmer- and industry-preferred landraces and cultivars. Because dynamics of multiplication and regeneration of embryogenic tissues differ between cassava genotypes, it was necessary to adapt the efficient cv. 60444 transformation protocol to genotypes that are more recalcitrant to transformation. Here we demonstrate that an improved cassava transformation protocol for cv. 60444 could be successfully modified for production of transgenic farmer-preferred cassava landraces. The modified transformation method reports on procedures for optimization and is likely transferable to other cassava genotypes reportedly recalcitrant to transformation provided production of high quality FEC. Because the three farmer-preferred cassava landraces selected in this study have been identified as resistant or tolerant to cassava mosaic disease (CMD), the adapted protocol will be essential to mobilize improved traits into cassava genotypes suitable for regions where CMD limits production.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA