Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Rev Immunol ; 24(4): 294-302, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37798539

RESUMEN

Type 2 immune responses form a critical defence against enteric worm infections. In recent years, mouse models have revealed shared and unique functions for group 2 innate lymphoid cells and T helper 2 cells in type 2 immune response to intestinal helminths. Both cell types use similar innate effector functions at the site of infection, whereas each population has distinct roles during different stages of infection. In this Perspective, we review the underlying mechanisms used by group 2 innate lymphoid cells and T helper 2 cells to cooperate with each other and suggest an overarching model of the interplay between these cell types over the course of a helminth infection.


Asunto(s)
Helmintiasis , Helmintos , Parásitos , Animales , Ratones , Humanos , Inmunidad Innata , Parásitos/metabolismo , Linfocitos , Helmintos/metabolismo , Células Th2 , Citocinas
2.
Cell Rep ; 42(4): 112377, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37060563

RESUMEN

The emergence of castration-resistant prostate cancer remains an area of unmet clinical need. We recently identified a subpopulation of normal prostate progenitor cells, characterized by an intrinsic resistance to androgen deprivation and expression of LY6D. We here demonstrate that conditional deletion of PTEN in the murine prostate epithelium causes an expansion of transformed LY6D+ progenitor cells without impairing stem cell properties. Transcriptomic analyses of LY6D+ luminal cells identified an autocrine positive feedback loop, based on the secretion of amphiregulin (AREG)-mediated activation of mitogen-activated protein kinase (MAPK) signaling, increasing cellular fitness and organoid formation. Pharmacological interference with this pathway overcomes the castration-resistant properties of LY6D+ cells with a suppression of organoid formation and loss of LY6D+ cells in vivo. Notably, LY6D+ tumor cells are enriched in high-grade and androgen-resistant prostate cancer, providing clinical evidence for their contribution to advanced disease. Our data indicate that early interference with MAPK inhibitors can prevent progression of castration-resistant prostate cancer.


Asunto(s)
Andrógenos , Neoplasias de la Próstata Resistentes a la Castración , Animales , Masculino , Ratones , Antagonistas de Andrógenos/farmacología , Andrógenos/metabolismo , Moléculas de Adhesión Celular/metabolismo , Línea Celular Tumoral , Proteínas Ligadas a GPI/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Próstata/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Receptores Androgénicos/metabolismo
3.
Cancer Res Commun ; 3(1): 109-118, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36968226

RESUMEN

In the last decades, antibody-based tumor therapy has fundamentally improved the efficacy of treatment for patients with cancer. Currently, almost all tumor antigen-targeting antibodies approved for clinical application are of IgG1 Fc isotype. Similarly, the mouse homolog mIgG2a is the most commonly used in tumor mouse models. However, in mice, the efficacy of antibody-based tumor therapy is largely restricted to a prophylactic application. Direct isotype comparison studies in mice in a therapeutic setting are scarce. In this study, we assessed the efficacy of mouse tumor-targeting antibodies of different isotypes in a therapeutic setting using a highly systematic approach. To this end, we engineered and expressed antibodies of the same specificity but different isotypes, targeting the artificial tumor antigen CD90.1/Thy1.1 expressed by B16 melanoma cells. Our experiments revealed that in a therapeutic setting mIgG2a was superior to both mIgE and mIgG1 in controlling tumor growth. Furthermore, the observed mIgG2a antitumor effect was entirely Fc mediated as the protection was lost when an Fc-silenced mIgG2a isotype (LALA-PG mutations) was used. These data confirm mIgG2a superiority in a therapeutic tumor model. Significance: Direct comparisons of different antibody isotypes of the same specificity in cancer settings are still scarce. Here, it is shown that mIgG2a has a greater effect compared with mIgG1 and mIgE in controlling tumor growth in a therapeutic setting.


Asunto(s)
Inmunoglobulina G , Neoplasias , Animales , Ratones , Receptores Fc , Neoplasias/terapia , Antígenos de Neoplasias
4.
Clin Exp Immunol ; 210(2): 104, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36355570
5.
Biomolecules ; 12(10)2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36291540

RESUMEN

T cell engager (TCE) antibodies have emerged as promising cancer therapeutics that link cytotoxic T-cells to tumor cells by simultaneously binding to CD3E on T-cells and to a tumor-associated antigen (TAA) expressed by tumor cells. We previously reported a novel bispecific format, the IgG-like Fab x sdAb-Fc (also known as half-IG_VH-h-CH2-CH3), combining a conventional antigen-binding fragment (Fab) with a single domain antibody (sdAb). Here, we evaluated this Fab x sdAb-Fc format as a T-cell redirecting bispecific antibody (TbsAbs) by targeting mEGFR on tumor cells and mCD3E on T cells. We focused our attention specifically on the hinge design of the sdAb arm of the bispecific antibody. Our data show that a TbsAb with a shorter hinge of 23 amino acids (TbsAb.short) showed a significantly better T cell redirected tumor cell elimination than the TbsAb with a longer, classical antibody hinge of 39 amino acids (TbsAb.long). Moreover, the TbsAb.short form mediated better T cell-tumor cell aggregation and increased CD69 and CD25 expression levels on T cells more than the TbsAb.long form. Taken together, our results indicate that already minor changes in the hinge design of TbsAbs can have significant impact on the anti-tumor activity of TbsAbs and may provide a new means to improve their potency.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias , Anticuerpos de Dominio Único , Humanos , Anticuerpos Biespecíficos/química , Neoplasias/terapia , Inmunoglobulina G , Aminoácidos , Muerte Celular
6.
Int Rev Cell Mol Biol ; 369: 45-70, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35777864

RESUMEN

The recent clinical approval of different Bi-specific antibodies (BsAbs) has revealed the great therapeutic potential of this novel class of biologicals. For example, the bispecific T-cell engager (BiTE), Blinatumomab, demonstrated the unique capacity of BsAbs to link T-cells with tumor cells, inducing targeted tumor cell removal. Additionally, Amivantamab, recognizing the EGFR and cMet in cis, revealed a substantial improvement of therapeutic efficacy by concomitantly targeting two tumor antigens. Cis-targeting BsAbs furthermore allow discerning cell populations which concurrently express two antigens, for which each antigen expression pattern in itself might not be selective. In this way, BsAbs harbor the great prospect of being more specific and showing fewer side effects than monoclonal antibodies. Nevertheless, BsAbs have also faced major obstacles, for instance, in ensuring reliable assembly and clinical-grade purification. In this review, we summarize the different available antibody platforms currently used for the generation of IgG-like and non-IgG-like BsAbs and explain which approaches have been used to assemble those BsAbs which are currently approved for clinical application. By focusing on the example of regulatory T-cells (Tregs) and the different, ongoing approaches to develop BsAbs specifically targeting Tregs within the tumor microenvironment, our review highlights the huge potential as well as the pitfalls BsAb face in order to emerge as one of the most effective therapeutic biologicals targeting desired cell populations in a highly selective way. Such BsAb may improve treatment efficacy and reduce side effects, thereby opening novel treatment opportunities for a range of different diseases, such as cancer or autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes , Neoplasias , Anticuerpos Biespecíficos , Anticuerpos Monoclonales , Humanos , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
7.
J Biol Chem ; 298(8): 102153, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35718062

RESUMEN

The generation of bispecific antibodies (bsAbs) targeting two different antigens opens a new level of specificity and, compared to mAbs, improved clinical efficacy in cancer therapy. Currently, the different strategies for development of bsAbs primarily focus on IgG isotypes. Nevertheless, in comparison to IgG isotypes, IgE has been shown to offer superior tumor control in preclinical models. Therefore, in order to combine the promising potential of IgE molecules with increased target selectivity of bsAbs, we developed dual tumor-associated antigen-targeting bispecific human IgE antibodies. As proof of principle, we used two different pairing approaches - knobs-into-holes and leucine zipper-mediated pairing. Our data show that both strategies were highly efficient in driving bispecific IgE formation, with no undesired pairings observed. Bispecific IgE antibodies also showed a dose-dependent binding to their target antigens, and cell bridging experiments demonstrated simultaneous binding of two different antigens. As antibodies mediate a major part of their effector functions through interaction with Fc receptors (FcRs) expressed on immune cells, we confirmed FcεR binding by inducing in vitro mast cell degranulation and demonstrating in vitro and in vivo monocyte-mediated cytotoxicity against target antigen-expressing Chinese hamster ovary cells. Moreover, we demonstrated that the IgE bsAb construct was significantly more efficient in mediating antibody-dependent cell toxicity than its IgG1 counterpart. In conclusion, we describe the successful development of first bispecific IgE antibodies with superior antibody-dependent cell toxicity-mediated cell killing in comparison to IgG bispecific antibodies. These findings highlight the relevance of IgE-based bispecific antibodies for clinical application.


Asunto(s)
Anticuerpos Biespecíficos , Antineoplásicos Inmunológicos , Inmunoglobulina E , Monocitos , Animales , Anticuerpos Biespecíficos/farmacología , Antineoplásicos Inmunológicos/farmacología , Células CHO , Cricetinae , Cricetulus , Humanos , Inmunoglobulina E/farmacología , Monocitos/citología
8.
Cell Metab ; 34(4): 503-505, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35385700

RESUMEN

In this issue of Cell Metabolism, Hochrein et al. identify a metabolic checkpoint controlling the transcriptional programming of effector CD4+ T cells. The authors show that GLUT3-mediated glucose import and ACLY-dependent acetyl-CoA generation control histone acetylation and, hence, the epigenetic imprinting of effector gene expression in differentiated effector CD4+ T cells. These findings suggest a novel therapeutic target for inflammation-associated diseases.


Asunto(s)
ATP Citrato (pro-S)-Liasa , Enfermedades del Sistema Inmune , ATP Citrato (pro-S)-Liasa/metabolismo , Acetilcoenzima A/metabolismo , Acetilación , Linfocitos T CD4-Positivos/metabolismo , Redes Reguladoras de Genes , Transportador de Glucosa de Tipo 3/metabolismo , Histonas/metabolismo , Humanos , Enfermedades del Sistema Inmune/metabolismo , Azúcares
9.
Biomedicines ; 10(1)2021 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-35052732

RESUMEN

Several types of tumours overexpress the Epidermal Growth Factor Receptor (EGFR) in either wild type or mutated form. These tumours are often highly aggressive and difficult to treat. The underlying mechanisms for this phenomenon have remained largely unresolved, but recent publications suggest two independent mechanisms that may contribute. According to one line of research, tumours that overexpress the EGFR grow autonomously and become "addicted" to growth factor signalling. Inhibition of this signal using EGFR inhibitors can, therefore, induce cell death in tumour cells and lead to tumour shrinkage. The other line of research, as highlighted by recent findings, suggests that the overexpression, specifically of mutant forms of the EGFR, may create an immune-suppressive and lymphocyte depleted microenvironment within tumours. Such a lymphocyte depleted microenvironment may explain the resistance of EGFR overexpressing cancers to tumour therapies, particularly to check-point inhibitor treatments. In this article, we discuss the recent data which support an immune modulatory effect of EGFR signalling and compare these published studies with the most recent data from The Cancer Genome Atlas (TCGA), in this way, dissecting possible underlying mechanisms. We thereby focus our study on how EGFR overexpression may lead to the local activation of TGFß, and hence to an immune suppressive environment. Consequently, we define a novel concept of how the mitogenic and immune modulatory effects of EGFR overexpression may contribute to tumour resistance to immunotherapy, and how EGFR specific inhibitors could be used best to enhance the efficacy of tumour therapy.

10.
J Immunol Methods ; 489: 112914, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33197470

RESUMEN

In addition to their known implication in allergy studies, IgE antibodies are becoming an increasingly interesting antibody class in cancer research. However, large-scale purification of IgE antibodies still poses substantial challenges, as they cannot be purified using techniques commonly used for other immunoglobulins such as protein A or protein G chromatography. Here, we have developed and optimised a gentle and simple IgE purification method based on thiophilic interaction chromatography (TIC). IgE binds to the thiophilic resin in presence of 1.2 M ammonium sulfate and is eluted in low salt concentration. Monomericity of purified antibodies ranged between 54 and 73%. Preparative size-exclusion chromatography was thereafter performed to further improve the purity, which reached >95% in the final product. The overall recovery was around 30%. The purification method was tested on both hybridoma-produced and recombinantly produced IgE antibodies with reproducible results. In addition, the antigen binding activity of purified IgE antibodies was preserved, as shown by binding ELISA. Purification by TIC is cheap, gentle in terms of pH to preserve IgE folding and function, and universal as any IgE antibody can be purified irrespective of the species of origin or affinity. Potentially, it could be used for purification of other antibody isotypes as well, when gentle conditions are required.


Asunto(s)
Hibridomas/química , Inmunoglobulina E/aislamiento & purificación , Animales , Cromatografía de Afinidad , Ensayo de Inmunoadsorción Enzimática , Hibridomas/inmunología , Inmunoglobulina E/química , Inmunoglobulina E/inmunología , Ratones , Células Tumorales Cultivadas
11.
J Immunol Methods ; 483: 112811, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32569598

RESUMEN

Due to the technical innovations in generating bispecific antibodies (BsAbs) in recent years, BsAbs have become important reagents for diagnostic and therapeutic applications. However, the difficulty of producing a heterodimer consisting of two different arms with high yield and purity constituted a major limitation for their application in academic and clinical settings. Here, we describe a novel Fc-containing BsAb format (Fab × sdAb-Fc) composed of a conventional antigen-binding fragment (Fab), and a single domain antibody (sdAb), which avoids heavy-light chain mis-pairing during antibody assembly. In this study, the Fab x sdAb-Fc BsAbs were efficiently produced by three widely used heavy-heavy chain heterodimerization methods: Knobs-into-holes (KIH), Charge-pairs (CP) and controlled Fab-arm exchange (cFAE), respectively. The novel Fab x sdAb-Fc format provided a rapid and efficient strategy to generate BsAb with high purity and a unique possibility to further purify desired BsAbs from undesired antibodies based on molecular weight (MW). Compared to conventional BsAb formats, the advantages of Fab x sdAb-Fc format may thus provide a straightforward opportunity to apply bispecific antibody principles to research and development of novel targets and pathways in diseases such as cancer and autoimmunity.


Asunto(s)
Anticuerpos Biespecíficos/inmunología , Receptores ErbB/inmunología , Glutamato Carboxipeptidasa II/inmunología , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fc de Inmunoglobulinas/inmunología , Inmunoglobulina G/inmunología , Glicoproteínas de Membrana/inmunología , Anticuerpos de Dominio Único/inmunología , Animales , Anticuerpos Biespecíficos/biosíntesis , Anticuerpos Biespecíficos/genética , Especificidad de Anticuerpos , Células CHO , Cricetulus , Receptores ErbB/genética , Receptores ErbB/metabolismo , Glutamato Carboxipeptidasa II/genética , Glutamato Carboxipeptidasa II/metabolismo , Fragmentos Fab de Inmunoglobulinas/biosíntesis , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/biosíntesis , Fragmentos Fc de Inmunoglobulinas/genética , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Peso Molecular , Mutación , Prueba de Estudio Conceptual , Multimerización de Proteína , Anticuerpos de Dominio Único/biosíntesis , Anticuerpos de Dominio Único/genética
12.
J Leukoc Biol ; 107(4): 547-549, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32108371

RESUMEN

Discussion on how monocytes may contribute to the expansion of Mϕ populations at the site of inflammation.


Asunto(s)
Monocitos/citología , Animales , Antígenos Ly/metabolismo , Proliferación Celular , Humanos , Macrófagos , Ratones , Cicatrización de Heridas
14.
Cell Rep ; 26(13): 3600-3612.e6, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30917315

RESUMEN

The Foxp3 transcription factor is a crucial determinant of both regulatory T (TREG) cell development and their functional maintenance. Appropriate modulation of tolerogenic immune responses therefore requires the tight regulation of Foxp3 transcriptional output, and this involves both transcriptional and post-translational regulation. Here, we show that during T cell activation, phosphorylation of Foxp3 in TREG cells can be regulated by a TGF-ß activated kinase 1 (TAK1)-Nemo-like kinase (NLK) signaling pathway. NLK interacts and phosphorylates Foxp3 in TREG cells, resulting in the stabilization of protein levels by preventing association with the STUB1 E3-ubiquitin protein ligase. Conditional TREG cell NLK-knockout (NLKΔTREG) results in decreased TREG cell-mediated immunosuppression in vivo, and NLK-deficient TREG cell animals develop more severe experimental autoimmune encephalomyelitis. Our data suggest a molecular mechanism, in which stimulation of TCR-mediated signaling can induce a TAK1-NLK pathway to sustain Foxp3 transcriptional activity through the stabilization of protein levels, thereby maintaining TREG cell suppressive function.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Tolerancia Inmunológica , Linfocitos T Reguladores/inmunología , Animales , Femenino , Células HEK293 , Humanos , Inflamación/inmunología , Quinasas Quinasa Quinasa PAM/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación , Estabilidad Proteica , Transducción de Señal , Linfocitos T Reguladores/metabolismo
15.
Immunology ; 157(3): 190-197, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30866049

RESUMEN

The immune system has a well-established contribution to tissue homeostasis and wound healing. However, in many cases immune responses themselves can cause severe tissue damage. Thus, the question arose to which extent cells of the immune system directly contribute to the process of wound healing and to which extent the resolution of excessive immune responses may indirectly contribute to wound healing. FoxP3-expressing CD4 T-cells, so-called regulatory T-cells (Tregs ), have an important contribution in the regulation of immune responses; and, in recent years, it has been suggested that Tregs next to an immune-regulatory, 'damage-limiting' function may also have an immune-independent 'damage-resolving' direct role in wound healing. In particular, the release of the epidermal growth factor-like growth factor Amphiregulin by tissue-resident Tregs during wound repair suggested such a function. Our recent findings have now revealed that Amphiregulin induces the local release of bio-active transforming growth factor (TGF)ß, a cytokine involved both in immune regulation as well as in the process of wound repair. In light of these findings, we discuss whether, by locally activating TGFß, Treg -derived Amphiregulin may contribute to both wound repair and immune suppression. Furthermore, we propose that Treg -derived Amphiregulin in an autocrine way may enable an IL-33-mediated survival and expansion of tissue-resident Tregs upon injury. Furthermore, Treg -derived Amphiregulin may contribute to a constitutive, low-level release of bio-active TGFß within tissues, leading to continuous tissue regeneration and to an immune-suppressive environment, which may keep inflammation-prone tissues in an homeostatic state.


Asunto(s)
Matriz Extracelular/inmunología , Linfocitos T Reguladores/inmunología , Cicatrización de Heridas , Anfirregulina/metabolismo , Animales , Comunicación Autocrina , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Humanos , Interleucina-33/metabolismo , Transducción de Señal , Linfocitos T Reguladores/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
16.
Immunity ; 50(3): 645-654.e6, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30770250

RESUMEN

The epidermal growth factor receptor ligand Amphiregulin has a well-documented role in the restoration of tissue homeostasis after injury; however, the mechanism by which Amphiregulin contributes to wound repair remains unknown. Here we show that Amphiregulin functioned by releasing bioactive transforming growth factor beta (TGF-ß) from latent complexes via integrin-αV activation. Using acute injury models in two different tissues, we found that by inducing TGF-ß activation on mesenchymal stromal cells (pericytes), Amphiregulin induced their differentiation into myofibroblasts, thereby selectively contributing to the restoration of vascular barrier function within injured tissue. Furthermore, we identified macrophages as a critical source of Amphiregulin, revealing a direct effector mechanism by which these cells contribute to tissue restoration after acute injury. Combined, these observations expose a so far under-appreciated mechanism of how cells of the immune system selectively control the differentiation of tissue progenitor cells during tissue repair and inflammation.


Asunto(s)
Anfirregulina/metabolismo , Macrófagos/metabolismo , Pericitos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Diferenciación Celular/fisiología , Femenino , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Miofibroblastos/metabolismo
17.
Bio Protoc ; 9(21)2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31993460

RESUMEN

Hepatic stellate cells (HSCs), alternatively known as liver pericytes, can differentiate into myofibroblasts and secrete extra-cellular matrix components, thereby promoting wound healing and fibrosis. Studying HSCs can provide insights into the pathological mechanisms governing these processes. HSC isolation methods typically comprise of enzymatic digestion followed by density gradient centrifugation and/or Fluorescent Activated Cell Sorting (FACS) mediated sorting. In this protocol, we describe a step-wise method for HSC isolation that utilizes Pronase and Collagenase for enzymatic tissue dissociation, followed by an Optiprep based density gradient centrifugation. The isolation can be performed using common media and buffers, and without the use of any special equipment for liver perfusion and HSC isolation. The technique yields ex vivo HSCs, suitable for use in assays.

18.
Proc Natl Acad Sci U S A ; 115(42): 10738-10743, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30279177

RESUMEN

γδ T cells are enriched at barrier sites such as the gut, skin, and lung, where their roles in maintaining barrier integrity are well established. However, how these cells contribute to homeostasis at the gingiva, a key oral barrier and site of the common chronic inflammatory disease periodontitis, has not been explored. Here we demonstrate that the gingiva is policed by γδ T cells with a T cell receptor (TCR) repertoire that diversifies during development. Gingival γδ T cells accumulated rapidly after birth in response to barrier damage, and strikingly, their absence resulted in enhanced pathology in murine models of the oral inflammatory disease periodontitis. Alterations in bacterial communities could not account for the increased disease severity seen in γδ T cell-deficient mice. Instead, gingival γδ T cells produced the wound healing associated cytokine amphiregulin, administration of which rescued the elevated oral pathology of tcrδ-/- mice. Collectively, our results identify γδ T cells as critical constituents of the immuno-surveillance network that safeguard gingival tissue homeostasis.


Asunto(s)
Anfirregulina/metabolismo , Homeostasis , Boca/inmunología , Periodontitis/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/fisiología , Subgrupos de Linfocitos T/inmunología , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Boca/metabolismo , Periodontitis/metabolismo , Periodontitis/patología , Subgrupos de Linfocitos T/metabolismo
19.
Breast Cancer Res ; 20(1): 131, 2018 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-30367629

RESUMEN

BACKGROUND: Amphiregulin (AREG), a ligand of the epidermal growth factor receptor, is not only essential for proper mammary ductal development, but also associated with breast cancer proliferation and growth. In the absence of AREG, mammary ductal growth is stunted and fails to expand. Furthermore, suppression of AREG expression in estrogen receptor-positive breast tumor cells inhibits in-vitro and in-vivo growth. METHODS: We crossed AREG-null (AREG-/-) mice with the murine luminal B breast cancer model, MMTV-PyMT (PyMT), to generate spontaneous breast tumors that lack AREG (AREG-/- PyMT). We evaluated tumor growth, cytokeratin-8 (K8)-positive luminal cells, cytokeratin-14 (K14)-positive myoepithelial cells, and expression of AREG, Ki67, and PyMT. Primary myoepithelial cells from nontumor-bearing AREG+/+ mice underwent fluorescence-activated cell sorting and were adapted to culture for in-vitro coculture studies with AT-3 cells, a cell line derived from C57Bl/6 PyMT mammary tumors. RESULTS: Intriguingly, PyMT-induced lesions progress more rapidly in AREG-/- mice than in AREG+/+ mice. Quantification of K8+ luminal and K14+ myoepithelial cells in non-PyMT AREG-/- mammary glands showed fewer K14+ cells and a thinner myoepithelial layer. Study of AT-3 cells indicated that coculture with myoepithelial cells or exposure to AREG, epidermal growth factor, or basic fibroblast growth factor can suppress PyMT expression. Late-stage AREG-/- PyMT tumors are significantly less solid in structure, with more areas of papillary and cystic growth. Papillary areas appear to be both less proliferative and less necrotic. In The Cancer Genome Atlas database, luminal-B invasive papillary carcinomas have lower AREG expression than luminal B invasive ductal carcinomas. CONCLUSIONS: Our study has revealed a previously unknown role of AREG in myoepithelial cell development and PyMT expression. AREG expression is essential for proper myoepithelial coverage of mammary ducts. Both AREG and myoepithelial cells can suppress PyMT expression. We find that lower AREG expression is associated with invasive papillary breast cancer in both the MMTV-PyMT model and human breast cancer.


Asunto(s)
Anfirregulina/metabolismo , Células Epiteliales/patología , Glándulas Mamarias Animales/patología , Neoplasias Mamarias Experimentales/patología , Anfirregulina/genética , Animales , Antígenos Transformadores de Poliomavirus/genética , Antígenos Transformadores de Poliomavirus/metabolismo , Línea Celular Tumoral , Proliferación Celular , Células Epiteliales/virología , Femenino , Humanos , Glándulas Mamarias Animales/citología , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/virología , Virus del Tumor Mamario del Ratón/genética , Virus del Tumor Mamario del Ratón/patogenicidad , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Invasividad Neoplásica/patología , Poliomavirus/genética , Poliomavirus/inmunología
20.
Nat Rev Immunol ; 18(11): 703-715, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30177790

RESUMEN

Lymphocytes have evolved to react rapidly and robustly to changes in their local environment by using transient adaptations and by regulating their terminal differentiation programmes. Forkhead box transcription factors (FTFs) can direct leukocyte-specific responses, and their functional diversification promotes a high degree of context-dependent specification. Many, often antagonistic, FTFs have overlapping expression patterns and can thereby compete for binding to the same chromosomal target sequences. Multiple molecular mechanisms also connect extracellular signals to the expression and functionality of specific FTFs and, in this way, fine-tune their activity. Through these diverse mechanisms, FTFs can function as context-dependent rheostats responding to diverse environmental stimuli. Focusing on the various mechanisms by which their functional activity is modulated, as well as on their mechanisms of action, we discuss how specific FTFs control lymphocyte function, allowing for the establishment and maintenance of immune homeostasis.


Asunto(s)
Linfocitos B/citología , Factores de Transcripción Forkhead/metabolismo , Homeostasis/inmunología , Linfocitos T/citología , Linfocitos B/inmunología , Diferenciación Celular/fisiología , Proteínas de Unión al ADN/genética , Humanos , Inmunidad/fisiología , Transducción de Señal/inmunología , Linfocitos T/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA