Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(6): e0285685, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37262030

RESUMEN

Protein transporters move essential metabolites across membranes in all living organisms. Downy mildew causing plant pathogens are biotrophic oomycetes that transport essential nutrients from their hosts to grow. Little is known about the functions and gene expression levels of membrane transporters produced by downy mildew causing pathogens during infection of their hosts. Approximately 170-190 nonredundant transporter genes were identified in the genomes of Peronospora belbahrii, Peronospora effusa, and Peronospora tabacina, which are specialized pathogens of basil, spinach, and tobacco, respectively. The largest groups of transporter genes in each species belonged to the major facilitator superfamily, mitochondrial carriers (MC), and the drug/metabolite transporter group. Gene expression of putative Peronospora transporters was measured using RNA sequencing data at two time points following inoculation onto leaves of their hosts. There were 16 transporter genes, seven of which were MCs, expressed in each Peronospora species that were among the top 45 most highly expressed transporter genes 5-7 days after inoculation. Gene transcripts encoding the ADP/ATP translocase and the mitochondrial phosphate carrier protein were the most abundant mRNAs detected in each Peronospora species. This study found a number of Peronospora genes that are likely critical for pathogenesis and which might serve as future targets for control of these devastating plant pathogens.


Asunto(s)
Oomicetos , Peronospora , Peronospora/genética , Enfermedades de las Plantas/genética , Oomicetos/genética , Análisis de Secuencia de ARN , Expresión Génica
2.
Plant Mol Biol ; 103(1-2): 185-196, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32124178

RESUMEN

As a key integrator of shoot branching, BRANCHED 1 (BRC1) coordinates and is orchestrated by endogenous and environmental signals involved in the regulation of axillary bud outgrowth. In the present study, we characterized the regulatory roles of five BRC gene members in tobacco (Nicotiana tabacum L.) using CRISPR site-directed mutagenesis and overexpression assays. It was shown that lateral branching was negatively regulated by NtBRC1A-1, 1B-1, and 1B-2, but was unexpectedly promoted by NtBRC2A. Suppression of bud growth may be attained by direct binding of NtBRCs to the Tassels Replace Upper Ears 1 (TRU1) genes. It was speculated that NtBRC2A probably confers a dominant negative effect by interfering with the branching-inhibitory BRC1 genes. Our results suggested that highly homologous gene family members may function antagonistically in the same signaling pathway. However, the molecular mechanism underlying NtBRC2A-mediated outgrowth of axillary buds needs to be further addressed. KEY MESSAGE: Axillary bud outgrowth in general is negatively regulated by the BRANCHED gene. Here we show that the BRANCHED genes play opposing regulatory roles in tobacco lateral branching.


Asunto(s)
Genes de Plantas , Nicotiana/crecimiento & desarrollo , Desarrollo de la Planta/genética , Sistemas CRISPR-Cas , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Filogenia , Interferencia de ARN , Transducción de Señal , Nicotiana/genética , Transcriptoma , Regulación hacia Arriba
3.
BMC Genomics ; 18(1): 49, 2017 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-28061749

RESUMEN

BACKGROUND: The development of long-read sequencing technologies, such as single-molecule real-time (SMRT) sequencing by PacBio, has produced a revolution in the sequencing of small genomes. Sequencing organelle genomes using PacBio long-read data is a cost effective, straightforward approach. Nevertheless, the availability of simple-to-use software to perform the assembly from raw reads is limited at present. RESULTS: We present Organelle-PBA, a Perl program designed specifically for the assembly of chloroplast and mitochondrial genomes. For chloroplast genomes, the program selects the chloroplast reads from a whole genome sequencing pool, maps the reads to a reference sequence from a closely related species, and then performs read correction and de novo assembly using Sprai. Organelle-PBA completes the assembly process with the additional step of scaffolding by SSPACE-LongRead. The program then detects the chloroplast inverted repeats and reassembles and re-orients the assembly based on the organelle origin of the reference. We have evaluated the performance of the software using PacBio reads from different species, read coverage, and reference genomes. Finally, we present the assembly of two novel chloroplast genomes from the species Picea glauca (Pinaceae) and Sinningia speciosa (Gesneriaceae). CONCLUSION: Organelle-PBA is an easy-to-use Perl-based software pipeline that was written specifically to assemble mitochondrial and chloroplast genomes from whole genome PacBio reads. The program is available at https://github.com/aubombarely/Organelle_PBA .


Asunto(s)
Genoma del Cloroplasto/genética , Genoma Mitocondrial/genética , Genómica/métodos , Análisis de Secuencia de ADN , Programas Informáticos , Animales , Arabidopsis/citología , Arabidopsis/genética , Secuencia de Bases , Ratones , Ratas
4.
Mol Plant Microbe Interact ; 2015(1): 28-39, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27839076

RESUMEN

Nicotiana benthamiana is the most widely used experimental host in plant virology, due mainly to the large number of diverse plant viruses that can successfully infect it. Addi- tionally, N. benthamiana is susceptible to a wide variety of other plant-pathogenic agents (such as bacteria, oomycetes, fungi, and so on), making this species a cornerstone of host-pathogen research, particularly in the context of innate immunity and defense signaling. Moreover, because it can be genetically transformed and regenerated with good efficiency and is amenable to facile methods for virus- induced gene silencing or transient protein expression, N. benthamiana is rapidly gaining popularity in plant biology, particularly in studies requiring protein localization, inter- action, or plant-based systems for protein expression and purification. Paradoxically, despite being an indispensable research model, little is known about the origins, genetic variation, or ecology of the N. benthamiana accessions cur- rently used by the research community. In addition to ad- dressing these latter topics, the purpose of this review is to provide information regarding sources for tools and reagents that can be used to support research in N. benthamiana. Finally, we propose that N. benthamiana is well situated to become a premier plant cell biology model, particularly for the virology community, who as a group were the first to recognize the potential of this unique Australian native.

5.
Front Plant Sci ; 3: 185, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22936937

RESUMEN

Nicotiana langsdorffii is one of two species of Nicotiana known to express an incompatible interaction with the oomycete Peronospora tabacina, the causal agent of tobacco blue mold disease. We previously showed that incompatibility is due to the hypersensitive response (HR), and plants expressing the HR are resistant to P. tabacina at all stages of growth. Resistance is due to a single dominant gene in N. langsdorffii accession S-4-4 that we have named NlRPT. In further characterizing this unique host-pathogen interaction, NlRPT has been placed on a preliminary genetic map of the N. langsdorffii genome. Allelic scores for five classes of DNA markers were determined for 90 progeny of a "modified backcross" involving two N. langsdorffii inbred lines and the related species N. forgetiana. All markers had an expected segregation ratio of 1:1, and were scored in a common format. The map was constructed with JoinMap 3.0, and loci showing excessive transmission distortion were removed. The linkage map consists of 266 molecular marker loci defined by 217 amplified fragment length polymorphisms (AFLPs), 26 simple-sequence repeats (SSRs), 10 conserved orthologous sequence markers, nine inter-simple sequence repeat markers, and four target region amplification polymorphism markers arranged in 12 linkage groups with a combined length of 1062 cM. NlRPT is located on linkage group three, flanked by four AFLP markers and one SSR. Regions of skewed segregation were detected on LGs 1, 5, and 9. Markers developed for N. langsdorffii are potentially useful genetic tools for other species in Nicotiana section Alatae, as well as in N. benthamiana. We also investigated whether AFLPs could be used to infer genetic relationships within N. langsdorffii and related species from section Alatae. A phenetic analysis of the AFLP data showed that there are two main lineages within N. langsdorffii, and that both contain populations expressing dominant resistance to P. tabacina.

6.
AoB Plants ; 2012: pls039, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23755350

RESUMEN

BACKGROUND AND AIMS: The florist's gloxinia is a familiar houseplant in the Gesneriaceae, the botanical family that includes the African violet (Saintpaulia) and other ornamental species. The gloxinia's wild progenitor is Sinningia speciosa (Lodd.) Hiern, a Brazilian endemic. Although it has been cultivated for almost 200 years, little is known about the genetic diversity in S. speciosa, how the wild populations relate to one another or even where the cultivated forms originated. Using available wild collections, preliminary phenetic and phylogenetic investigations were conducted to elucidate the interspecific relationships within S. speciosa and to infer the origins of the cultivars. METHODOLOGY: Amplified fragment length polymorphism (AFLP) analysis was applied to 24 accessions of S. speciosa (17 wild collections, seven cultivars) and one accession each of Sinningia guttata and Sinningia macrophylla. A maximum likelihood (ML) tree was also calculated from an alignment of the nuclear ribosomal internal transcribed spacer sequence from the same 26 accessions. PRINCIPAL RESULTS: Dice/UPGMA and principal coordinates analysis of the AFLP data partitioned S. speciosa into several distinct clusters, one of which included S. macrophylla. All cultivated 'gloxinias' grouped together in a major cluster with plants from Rio de Janeiro. The AFLP results were compared with a phylogenetic analysis of the ribosomal spacer region, which was informative in S. speciosa. The ML tree generally supported the AFLP results, although several clades lacked strong statistical support. CONCLUSIONS: Independent analyses of two different data sets show that S. speciosa is a diverse species comprised of several lineages. Genetic distance estimates calculated from the AFLP data were positively correlated with geographic distances between populations, indicating that reproductive isolation could be driving speciation in this taxon. Molecular markers are under development for population genetic studies in S. speciosa, which will make it possible to define evolutionarily significant units for purposes of conservation.

7.
Genome ; 53(12): 1066-82, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21164539

RESUMEN

The Gesneriaceae (Lamiales) is a family of flowering plants comprising >3000 species of mainly tropical origin, the most familiar of which is the cultivated African violet (Saintpaulia spp.). Species of Gesneriaceae are poorly represented in the lists of taxa sampled for genome size estimation; measurements are available for three species of Ramonda and one each of Haberlea, Saintpaulia, and Streptocarpus, all species of Old World origin. We report here nuclear genome size estimates for 10 species of Sinningia, a neotropical genus largely restricted to Brazil. Flow cytometry of leaf cell nuclei showed that holoploid genome size in Sinningia is very small (approximately two times the size of the Arabidopsis genome), and is small compared to the other six species of Gesneriaceae with genome size estimates. We also documented intraspecific genome size variation of 21%-26% within a group of wild Sinningia speciosa (Lodd.) Hiern collections. In addition, we analyzed 1210 genome survey sequences from S. speciosa to characterize basic features of the nuclear genome such as guanine-cytosine content, types of repetitive elements, numbers of protein-coding sequences, and sequences unique to S. speciosa. We included several other angiosperm species as genome size standards, one of which was the snapdragon (Antirrhinum majus L.; Veronicaceae, Lamiales). Multiple measurements on three accessions indicated that the genome size of A. majus is ~633 × 106 base pairs, which is approximately 40% of the previously published estimate.


Asunto(s)
ADN de Plantas/análisis , ADN de Plantas/genética , Variación Genética , Genoma de Planta , Magnoliopsida/genética , Secuencia Rica en At , Núcleo Celular/química , Núcleo Celular/genética , Citometría de Flujo , Análisis de Secuencia de ADN
8.
Planta ; 231(5): 1061-76, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20157728

RESUMEN

Tobacco is a commonly used heterologous system for studying combinatorial regulation of the flavonoid biosynthetic pathway by the bHLH-MYB transcription factor (TF) complex in plants. However, little is known about the endogenous tobacco bHLH and MYB TFs involved in the pathway. Ectopic expression in tobacco of heterologous bHLH TF genes, such as maize Lc, leads to increased anthocyanin production in the reproductive tissues, suggesting the presence of a reproductive tissue-specific MYB TF that interacts with the Lc-like bHLH TFs. We isolated a gene (NtAn2) encoding a R2R3 MYB TF from developing tobacco flowers. NtAn2 shares high sequence homology with other known flavonoid-related MYB TFs and is mostly expressed in developing flowers. Constitutive ectopic expression of NtAn2 induces whole-plant anthocyanin production in tobacco and Arabidopsis. In transgenic tobacco and Arabidopsis expressing NtAn2, both subsets of early and late flavonoid pathway genes are up-regulated. Suppression of NtAn2 by RNAi in tobacco resulted in a white-flowered phenotype and the inhibition of the late pathway genes. Yeast two-hybrid assays demonstrated that NtAn2 can interact with five heterologous bHLH TFs known to induce anthocyanin synthesis in other species including maize, perilla, snapdragon and Arabidopsis. Bimolecular fluorescent complementation using split YFP demonstrated that NtAn2 interacts with Lc in tobacco cells and that the complex is localized to nuclei. Transient co-expression of NtAn2 and Lc or Arabidopsis TT8 in tobacco protoplasts activated the promoters of two key flavonoid pathway genes, chalcone synthase and dihydroflavonol reductase. These results suggest that NtAn2 is a key gene controlling anthocyanin production in reproductive tissues of tobacco.


Asunto(s)
Flores/genética , Nicotiana/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secuencia de Aminoácidos , Antocianinas/biosíntesis , Arabidopsis/genética , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Flores/citología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genoma de Planta/genética , Redes y Vías Metabólicas/genética , Datos de Secuencia Molecular , Especificidad de Órganos/genética , Fenotipo , Filogenia , Pigmentación/genética , Proteínas de Plantas/química , Plantas Modificadas Genéticamente , Propanoles/metabolismo , Unión Proteica , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ADN , Supresión Genética , Nicotiana/citología , Regulación hacia Arriba/genética
9.
Sci China C Life Sci ; 52(8): 693-700, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19727586

RESUMEN

Because plants are sessile organisms, the ability to adapt to a wide range of environmental conditions is critical for their survival. As a consequence, plants use hormones to regulate growth, mitigate biotic and abiotic stresses, and to communicate with other organisms. Many plant hormones function pleiotropically in vivo, and often work in tandem with other hormones that are chemically distinct. A newly-defined class of plant hormones, the strigolactones, cooperate with auxins and cytokinins to control shoot branching and the outgrowth of lateral buds. Strigolactones were originally identified as compounds that stimulated the germination of parasitic plant seeds, and were also demonstrated to induce hyphal branching in arbuscular mycorrhizal (AM) fungi. AM fungi form symbioses with higher plant roots and mainly facilitate the absorption of phosphate from the soil. Conforming to the classical definition of a plant hormone, strigolactones are produced in the roots and translocated to the shoots where they inhibit shoot outgrowth and branching. The biosynthesis of this class of compounds is regulated by soil nutrient availability, i.e. the plant will increase its production of strigolactones when the soil phosphate concentration is limited, and decrease production when phosphates are in ample supply. Strigolactones that affect plant shoot branching, AM fungal hyphal branching, and seed germination in parasitic plants facilitate chemical synthesis of similar compounds to control these and other biological processes by exogenous application.


Asunto(s)
Hongos/efectos de los fármacos , Lactonas/farmacología , Parásitos/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Brotes de la Planta/crecimiento & desarrollo , Plantas/microbiología , Animales , Lactonas/química , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/efectos de los fármacos , Plantas/parasitología
10.
Plant Physiol ; 150(1): 178-89, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19321709

RESUMEN

Although the final size of plant organs is influenced by environmental cues, it is generally accepted that the primary size determinants are intrinsic factors that regulate and coordinate cell proliferation and cell expansion. Here, we show that optimal proteasome function is required to maintain final shoot organ size in Arabidopsis (Arabidopsis thaliana). Loss of function of the subunit regulatory particle AAA ATPase (RPT2a) causes a weak defect in 26S proteasome activity and leads to an enlargement of leaves, stems, flowers, fruits, seeds, and embryos. These size increases are a result of increased cell expansion that compensates for a reduction in cell number. Increased ploidy levels were found in some but not all enlarged organs, indicating that the cell size increases are not caused by a higher nuclear DNA content. Partial loss of function of the regulatory particle non-ATPase (RPN) subunits RPN10 and RPN12a causes a stronger defect in proteasome function and also results in cell enlargement and decreased cell proliferation. However, the increased cell volumes in rpn10-1 and rpn12a-1 mutants translated into the enlargement of only some, but not all, shoot organs. Collectively, these data show that during Arabidopsis shoot development, the maintenance of optimal proteasome activity levels is important for balancing cell expansion with cell proliferation rates.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Proliferación Celular , Tamaño de la Célula , Complejo de la Endopetidasa Proteasomal/fisiología , Arabidopsis/citología , Arabidopsis/enzimología , Proteínas de Arabidopsis/genética , Cotiledón/genética , Cotiledón/crecimiento & desarrollo , Cotiledón/fisiología , Mutación , Brotes de la Planta/citología , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Poliploidía
11.
Mol Plant Microbe Interact ; 21(8): 1015-26, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18616398

RESUMEN

Nicotiana benthamiana is the most widely used experimental host in plant virology, due mainly to the large number of diverse plant viruses that can successfully infect it. Additionally, N. benthamiana is susceptible to a wide variety of other plant-pathogenic agents (such as bacteria, oomycetes, fungi, and so on), making this species a cornerstone of host-pathogen research, particularly in the context of innate immunity and defense signaling. Moreover, because it can be genetically transformed and regenerated with good efficiency and is amenable to facile methods for virus-induced gene silencing or transient protein expression, N. benthamiana is rapidly gaining popularity in plant biology, particularly in studies requiring protein localization, interaction, or plant-based systems for protein expression and purification. Paradoxically, despite being an indispensable research model, little is known about the origins, genetic variation, or ecology of the N. benthamiana accessions currently used by the research community. In addition to addressing these latter topics, the purpose of this review is to provide information regarding sources for tools and reagents that can be used to support research in N. benthamiana. Finally, we propose that N. benthamiana is well situated to become a premier plant cell biology model, particularly for the virology community, who as a group were the first to recognize the potential of this unique Australian native.


Asunto(s)
Interacciones Huésped-Patógeno , Nicotiana/genética , Nicotiana/virología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Virus de Plantas/fisiología , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Silenciador del Gen , Variación Genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/virología
13.
Genome ; 46(5): 914-24, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14608408

RESUMEN

A primary linkage map of the domestic turkey (Meleagris gallopavo) was developed by segregation analysis of genetic markers within a backcross family. This reference family includes 84 offspring from one F1 sire mated to two dams. Genomic DNA was digested using one of five restriction enzymes, and restriction fragment length polymorphisms were detected on Southern blots using probes prepared from 135 random clones isolated from a whole-embryo cDNA library. DNA sequence was subsequently determined for 114 of these cDNA clones. Sequence comparisons were done using BLAST searches of the GenBank database, and redundant sequences were eliminated. High similarity was found between 23% of the turkey sequences and mRNA sequences reported for the chicken. The current map, based on expressed genes, includes 138 loci, encompassing 113 loci arranged into 22 linkage groups and an additional 25 loci that remain unlinked. The average distance between linked markers is 6 cM and the longest linkage group (17 loci) measures 131 cM. The total map distance contained within linkage groups is 651 cM. The present map provides an important framework for future genome mapping in the turkey.


Asunto(s)
Mapeo Cromosómico , Genoma , Pavos/genética , Animales , Femenino , Expresión Génica , Ligamiento Genético , Marcadores Genéticos , Escala de Lod , Masculino , Polimorfismo de Longitud del Fragmento de Restricción , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...