Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomedicines ; 12(5)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38791067

RESUMEN

Reverse transcription followed by quantitative polymerase chain reaction (RT-qPCR) is a commonly used tool for gene expression analysis. The selection of stably expressed reference genes is required for accurate normalization. The aim of this study was to identify the optimal reference genes for RT-qPCR normalization in various brain regions of rats at different stages of the lithium-pilocarpine model of acquired epilepsy. We tested the expression stability of nine housekeeping genes commonly used as reference genes in brain research: Actb, Gapdh, B2m, Rpl13a, Sdha, Ppia, Hprt1, Pgk1, and Ywhaz. Based on four standard algorithms (geNorm, NormFinder, BestKeeper, and comparative delta-Ct), we found that after pilocarpine-induced status epilepticus, the stability of the tested reference genes varied significantly between brain regions and depended on time after epileptogenesis induction (3 and 7 days in the latent phase, and 2 months in the chronic phase of the model). Pgk1 and Ywhaz were the most stable, while Actb, Sdha, and B2m demonstrated the lowest stability in the analyzed brain areas. We revealed time- and region-specific changes in the mRNA expression of the housekeeping genes B2m, Actb, Sdha, Rpl13a, Gapdh, Hprt1, and Sdha. These changes were more pronounced in the hippocampal region during the latent phase of the model and are thought to be related to epileptogenesis. Thus, RT-qPCR analysis of mRNA expression in acquired epilepsy models requires careful selection of reference genes depending on the brain region and time of analysis. For the time course study of epileptogenesis in the rat lithium-pilocarpine model, we recommend the use of the Pgk1 and Ywhaz genes.

2.
Gene Ther ; 31(3-4): 144-153, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37968509

RESUMEN

Gene therapy offers a potential alternative to the surgical treatment of epilepsy, which affects millions of people and is pharmacoresistant in ~30% of cases. Aimed at reducing the excitability of principal neurons, the engineered expression of K+ channels has been proposed as a treatment due to the outstanding ability of K+ channels to hyperpolarize neurons. However, the effects of K+ channel overexpression on cell physiology remain to be investigated. Here we report an adeno-associated virus (AAV) vector designed to reduce epileptiform activity specifically in excitatory pyramidal neurons by expressing the human Ca2+-gated K+ channel KCNN4 (KCa3.1). Electrophysiological and pharmacological experiments in acute brain slices showed that KCNN4-transduced cells exhibited a Ca2+-dependent slow afterhyperpolarization that significantly decreased the ability of KCNN4-positive neurons to generate high-frequency spike trains without affecting their lower-frequency coding ability and action potential shapes. Antiepileptic activity tests showed potent suppression of pharmacologically induced seizures in vitro at both single cell and local field potential levels with decreased spiking during ictal discharges. Taken together, our findings strongly suggest that the AAV-based expression of the KCNN4 channel in excitatory neurons is a promising therapeutic intervention as gene therapy for epilepsy.


Asunto(s)
Epilepsia , Neuronas , Humanos , Neuronas/metabolismo , Potenciales de Acción/fisiología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/genética , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/farmacología
3.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38069200

RESUMEN

Febrile seizures during early childhood may result in central nervous system developmental disorders. However, the specific mechanisms behind the impact of febrile seizures on the developing brain are not well understood. To address this gap in knowledge, we employed a hyperthermic model of febrile seizures in 10-day-old rats and tracked their development over two months. Our objective was to determine the degree to which the properties of the hippocampal glutamatergic system are modified. We analyzed whether pyramidal glutamatergic neurons in the hippocampus die after febrile seizures. Our findings indicate that there is a reduction in the number of neurons in various regions of the hippocampus in the first two days after seizures. The CA1 field showed the greatest susceptibility, and the reduction in the number of neurons in post-FS rats in this area appeared to be long-lasting. Electrophysiological studies indicate that febrile seizures cause a reduction in glutamatergic transmission, leading to decreased local field potential amplitude. This impairment could be attributable to diminished glutamate release probability as evidenced by decreases in the frequency of miniature excitatory postsynaptic currents and increases in the paired-pulse ratio of synaptic responses. We also found higher threshold current causing hind limb extension in the maximal electroshock seizure threshold test of rats 2 months after febrile seizures compared to the control animals. Our research suggests that febrile seizures can impair glutamatergic transmission, which may protect against future seizures.


Asunto(s)
Hipertermia Inducida , Convulsiones Febriles , Estado Epiléptico , Preescolar , Humanos , Ratas , Animales , Ratas Sprague-Dawley , Hipertermia Inducida/efectos adversos , Hipocampo/fisiología , Región CA1 Hipocampal , Estado Epiléptico/complicaciones , Modelos Animales de Enfermedad
4.
Int J Mol Sci ; 24(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38139292

RESUMEN

Epilepsy is a prevalent neurological disorder [...].


Asunto(s)
Epilepsia , Humanos , Epilepsia/genética
5.
Mol Neurobiol ; 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38114761

RESUMEN

The marine flavobacterium Krokinobactereikastus light-driven sodium pump (KR2) generates an outward sodium ion current under 530 nm light stimulation, representing a promising optogenetic tool for seizure control. However, the specifics of KR2 application to suppress epileptic activity have not yet been addressed. In the present study, we investigated the possibility of KR2 photostimulation to suppress epileptiform activity in mouse brain slices using the 4-aminopyrindine (4-AP) model. We injected the adeno-associated viral vector (AAV-PHP.eB-hSyn-KR2-YFP) containing the KR2 sodium pump gene enhanced with appropriate trafficking tags. KR2 expression was observed in the lateral entorhinal cortex and CA1 hippocampus. Using whole-cell patch clamp in mouse brain slices, we show that KR2, when stimulated with LED light, induces a substantial hyperpolarization of entorhinal neurons. However, continuous photostimulation of KR2 does not interrupt ictal discharges in mouse entorhinal cortex slices induced by a solution containing 4-AP. KR2-induced hyperpolarization strongly activates neuronal HCN channels. Consequently, turning off photostimulation resulted in HCN channel-mediated rebound depolarization accompanied by a transient increase in spontaneous network activity. Using low-frequency pulsed photostimulation, we induced the generation of short HCN channel-mediated discharges that occurred in response to the light stimulus being turned off; these discharges reliably interrupt ictal activity. Thus, low-frequency pulsed photostimulation of KR2 can be considered as a potential tool for controlling epileptic seizures.

6.
Int J Mol Sci ; 24(20)2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37895080

RESUMEN

Temporal lobe epilepsy is a common, chronic disorder with spontaneous seizures that is often refractory to drug therapy. A potential cause of temporal lobe epilepsy is primary brain injury, making prevention of epileptogenesis after the initial event an optimal method of treatment. Despite this, no preventive therapy for epilepsy is currently available. The purpose of this study was to evaluate the effects of anakinra, lamotrigine, and their combination on epileptogenesis using the rat lithium-pilocarpine model of temporal lobe epilepsy. The study showed that there was no significant difference in the number and duration of seizures between treated and untreated animals. However, the severity of seizures was significantly reduced after treatment. Anakinra and lamotrigine, alone or in combination, significantly reduced neuronal loss in the CA1 hippocampus compared to the control group. However, the drugs administered alone were found to be more effective in preventing neuron loss in the hippocampal CA3 field compared to combination treatment. The treatment alleviated the impairments in activity level, exploratory behavior, and anxiety but had a relatively weak effect on TLE-induced impairments in social behavior and memory. The efficacy of the combination treatment did not differ from that of anakinra and lamotrigine monotherapy. These findings suggest that anakinra and lamotrigine, either alone or in combination, may be clinically useful in preventing the development of histopathological and behavioral abnormalities associated with epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal , Ratas , Animales , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/patología , Pilocarpina/efectos adversos , Lamotrigina/efectos adversos , Litio/efectos adversos , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Anticonvulsivantes/efectos adversos , Convulsiones/tratamiento farmacológico , Hipocampo , Modelos Animales de Enfermedad
7.
Int J Mol Sci ; 24(16)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37628802

RESUMEN

Febrile seizures (FSs) are a relatively common early-life condition that can cause CNS developmental disorders, but the specific mechanisms of action of FS are poorly understood. In this work, we used hyperthermia-induced FS in 10-day-old rats. We demonstrated that the efficiency of glutamatergic synaptic transmission decreased rapidly after FS by recording local field potentials. This effect was transient, and after two days there were no differences between control and post-FS groups. During early ontogeny, the proportion of calcium-permeable (CP)-AMPA receptors in the synapses of the principal cortical and hippocampal neurons is high. Therefore, rapid internalization of CP-AMPA receptors may be one of the mechanisms underlying this phenomenon. Using the whole-cell patch-clamp method and the selective CP-AMPA receptor blocker IEM-1460, we tested whether the proportion of CP-AMPA receptors changed. We have demonstrated that FS rapidly reduces synaptic CP-AMPA receptors in both the hippocampus and the entorhinal cortex. This process was accompanied by a sharp decrease in the calcium permeability of the membrane of principal neurons, which we revealed in experiments with kainate-induced cobalt uptake. Our experiments show that FSs cause rapid changes in the function of the glutamatergic system, which may have compensatory effects that prevent excessive excitotoxicity and neuronal death.


Asunto(s)
Corteza Entorrinal , Convulsiones Febriles , Animales , Ratas , Calcio , Receptores AMPA , Hipocampo , Calcio de la Dieta , Sinapsis , Neuronas
8.
Epilepsy Behav ; 147: 109391, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37619464

RESUMEN

Temporal lobe epilepsy (TLE) often causes cognitive impairment, especially a decline in spatial memory. Reductions in spatial memory and learning are also common in rodent models of TLE. The Morris water maze and the Barnes maze are the standard methods for evaluating spatial learning and memory in rodents. However, animals with TLE may exhibit agitation, distress, and fail to follow the paradigmatic context of these tests, making the interpretation of experimental data difficult. This study optimized the procedure of the Morris water maze and the Barnes maze to evaluate spatial learning and memory in rats with the lithium-pilocarpine TLE model (LPM rats). It was demonstrated that LPM rats required a mandatory and prolonged habituation stage for both tests. Therefore, the experimental rats performed relatively well on these tests. Nevertheless, LPM rats exhibited a slower learning process compared to the control rats. LPM rats also showed a reduction in spatial memory formation. This was more pronounced in the Barnes maze. Also, LPM rats utilized a sequential strategy for searching in the Barnes maze and were incapable of developing a more efficient spatial search strategy that is common in control animals. The Barnes maze may be a better choice for assessing search strategies, learning deficits, and spatial memory in rats with TLE when choosing between the two tests. This is because of the risk of unexpected seizure occurrence during the Morris water maze tests, and the potential risks for animal welfare.


Asunto(s)
Disfunción Cognitiva , Epilepsia del Lóbulo Temporal , Epilepsia , Ratas , Animales , Pilocarpina/toxicidad , Litio , Prueba del Laberinto Acuático de Morris , Ratas Wistar , Aprendizaje Espacial , Cognición , Aprendizaje por Laberinto , Modelos Animales de Enfermedad
9.
Int J Mol Sci ; 24(15)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37569790

RESUMEN

Despite the availability of a large number of antiepileptic drugs, about 30% of patients with epilepsy, especially temporal lobe epilepsy (TLE), continue to experience seizures [...].


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Humanos , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia/tratamiento farmacológico , Convulsiones/tratamiento farmacológico , Anticonvulsivantes/uso terapéutico
10.
Int J Mol Sci ; 24(9)2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-37176158

RESUMEN

Epilepsy is a challenging brain disorder that is often difficult to treat with conventional therapies. The gut microbiota has been shown to play an important role in the development of neuropsychiatric disorders, including epilepsy. In this study, the effects of Bifidobacterium longum, a probiotic, on inflammation, neuronal degeneration, and behavior are evaluated in a lithium-pilocarpine model of temporal lobe epilepsy (TLE) induced in young adult rats. B. longum was administered orally at a dose of 109 CFU/rat for 30 days after pilocarpine injection. The results show that B. longum treatment has beneficial effects on the TLE-induced changes in anxiety levels, neuronal death in the amygdala, and body weight recovery. In addition, B. longum increased the expression of anti-inflammatory and neuroprotective genes, such as Il1rn and Pparg. However, the probiotic had little effect on TLE-induced astrogliosis and microgliosis and did not reduce neuronal death in the hippocampus and temporal cortex. The study suggests that B. longum may have a beneficial effect on TLE and may provide valuable insights into the role of gut bacteria in epileptogenesis. In addition, the results show that B. longum may be a promising drug for the comprehensive treatment of epilepsy.


Asunto(s)
Bifidobacterium longum , Epilepsia del Lóbulo Temporal , Epilepsia , Probióticos , Ratas , Animales , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/tratamiento farmacológico , Epilepsia del Lóbulo Temporal/metabolismo , Pilocarpina/efectos adversos , Litio/farmacología , Hipocampo/metabolismo , Epilepsia/metabolismo , Probióticos/farmacología , Modelos Animales de Enfermedad
11.
Biochemistry (Mosc) ; 88(3): 353-363, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37076282

RESUMEN

Status epilepticus (SE) triggers many not yet fully understood pathological changes in the nervous system that can lead to the development of epilepsy. In this work, we studied the effects of SE on the properties of excitatory glutamatergic transmission in the hippocampus in the lithium-pilocarpine model of temporal lobe epilepsy in rats. The studies were performed 1 day (acute phase), 3 and 7 days (latent phase), and 30 to 80 days (chronic phase) after SE. According to RT-qPCR data, expression of the genes coding for the AMPA receptor subunits GluA1 and GluA2 was downregulated in the latent phase, which may lead to the increased proportion of calcium-permeable AMPA receptors that play an essential role in the pathogenesis of many CNS diseases. The efficiency of excitatory synaptic neurotransmission in acute brain slices was decreased in all phases of the model, as determined by recording field responses in the CA1 region of the hippocampus in response to the stimulation of Schaffer collaterals by electric current of different strengths. However, the frequency of spontaneous excitatory postsynaptic potentials increased in the chronic phase, indicating an increased background activity of the glutamatergic system in epilepsy. This was also evidenced by a decrease in the threshold current causing hindlimb extension in the maximal electroshock seizure threshold test in rats with temporal lobe epilepsy compared to the control animals. The results suggest a series of functional changes in the properties of glutamatergic system associated with the epilepsy development and can be used to develop the antiepileptogenic therapy.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Estado Epiléptico , Ratas , Animales , Pilocarpina/toxicidad , Pilocarpina/metabolismo , Epilepsia del Lóbulo Temporal/metabolismo , Litio/farmacología , Litio/metabolismo , Hipocampo/metabolismo , Epilepsia/metabolismo , Estado Epiléptico/inducido químicamente , Estado Epiléptico/metabolismo , Receptores AMPA/genética , Receptores AMPA/metabolismo , Modelos Animales de Enfermedad
12.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36362260

RESUMEN

Data on the long-term consequences of a single episode of generalized seizures in infants are inconsistent. In this study, we examined the effects of pentylenetetrazole-induced generalized seizures in three-week-old rats. One month after the seizures, we detected a moderate neuronal loss in several hippocampal regions: CA1, CA3, and hilus, but not in the dentate gyrus. In addition, long-term synaptic potentiation (LTP) was impaired. We also found that the mechanism of plasticity induction was altered: additional activation of metabotropic glutamate receptors (mGluR1) is required for LTP induction in experimental rats. This disturbance of the plasticity induction mechanism is likely due to the greater involvement of perisynaptic NMDA receptors compared to receptors located in the core part of the postsynaptic density. This hypothesis is supported by experiments with selective blockades of core-located NMDA receptors by the use-dependent blocker MK-801. MK-801 had no effect on LTP induction in experimental rats and suppressed LTP in control animals. The weakening of the function of core-located NMDA receptors may be due to the disturbed clearance of glutamate from the synaptic cleft since the distribution of the astrocytic glutamate transporter EAAT2 in experimental animals was found to be altered.


Asunto(s)
Pentilenotetrazol , Receptores de N-Metil-D-Aspartato , Animales , Ratas , Maleato de Dizocilpina , Hipocampo/metabolismo , Plasticidad Neuronal , Pentilenotetrazol/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Convulsiones/inducido químicamente
13.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36293077

RESUMEN

Prolonged neonatal febrile seizures (FSs) often lead to cognitive decline and increased risk of psychopathology in adulthood. However, the neurobiological mechanisms underlying the long-term adverse effects of FSs remain unclear. In this study, we exposed rat pups to hyperthermia and induced FSs lasting at least 15 min. We investigated the short-term (one day) and delayed (11-13 and 41-45 days) effects of FSs on some parameters of morphological and functional maturation in the hippocampus. We noticed that FSs altered the developmental pattern of glial fibrillary acidic protein (GFAP) immunoreactivity. In rats aged 21-23 days, GFAP-positive astrocytes covered a smaller area, and their morphological characteristics resembled those of rats at 11 days of age. In post-FS rats, the magnitude of long-term synaptic potentiation was reduced compared to control animals of the same age. Applying the gliotransmitter D-serine, an agonist of the glycine site of NMDA receptors, restored LTP to control values. A decrease in LTP amplitude was correlated with impaired spatial learning and memory in the Barnes maze task in post-FS rats. Our data suggest that impaired neuron-glia interactions may be an essential mechanism of the adverse effects of FS on the developing brain.


Asunto(s)
Epilepsia , Convulsiones Febriles , Estado Epiléptico , Ratas , Animales , Proteína Ácida Fibrilar de la Glía/metabolismo , Astrocitos/metabolismo , Convulsiones Febriles/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Hipocampo/metabolismo , Plasticidad Neuronal , Estado Epiléptico/metabolismo , Epilepsia/metabolismo , Serina/metabolismo , Glicina/farmacología
14.
Biochem Biophys Res Commun ; 623: 74-80, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35878426

RESUMEN

Potassium ion channels are extensively involved in the regulation of epileptic seizures. The small conductance calcium-sensitive potassium channels (SK channels) and ATP-sensitive potassium (KATP) channels are activated by calcium ion entry and decrease ATP levels, respectively. These channels can underlie the post-burst afterhyperpolarization and be upregulated during seizures, providing negative feedback during epileptic activity. Using the whole-cell patch-clamp method in rat brain slices, we investigated the effect of SK- and KATP-affecting drugs on seizure-like events (SLEs) in the 4-aminopyridine model of epileptic seizures in vitro. We demonstrate that SK and KATP channels contribute to sustaining the high-frequency firing of the principal neurons in the deep layers of the entorhinal cortex during injections of depolarizing current and epileptiform discharges. Neither the pharmacological blockade nor the activation of these channels was able to prevent the epileptiform activity in brain slices. However, the blockade of KATP channels increases the SLE duration, suggesting that these channels may contribute to the termination of SLEs. Thus, KATP channels can be considered a promising target for pharmacological interventions for the treatment of epilepsy.


Asunto(s)
Calcio , Epilepsia , Potenciales de Acción/fisiología , Adenosina Trifosfato , Animales , Calcio/metabolismo , Canales de Calcio , Canales KATP , Potasio , Canales de Potasio , Ratas , Convulsiones , Canales de Potasio de Pequeña Conductancia Activados por el Calcio
15.
Front Neurosci ; 16: 867120, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35495064

RESUMEN

Prenatal hypoxia is a widespread condition that causes various disturbances in later life, including aberrant central nervous system development, abnormalities in EEG rhythms, and susceptibility to seizures. Hypoxia in rats on the 14th day of embryogenesis (E14) disrupts cortical neuroblast radial migration, mainly affecting the progenitors of cortical glutamatergic neurons but not GABAergic interneurons or hippocampal neurons. Thus, hypoxia at this time point might affect the development of the neocortex to a greater extent than the hippocampus. In the present study, we investigated the long-term effects of hypoxia on the properties of the pyramidal neurons in the hippocampus and entorhinal cortex (EC) in 3-week-old rats subjected to hypoxia on E14. We observed a reduction in the total number of NeuN-positive neurons in EC but not in the CA1 field of the hippocampus, indicating an increased cell loss in EC. However, the principal neuron electrophysiological characteristics were altered in the EC and hippocampus of animals exposed to hypoxia. The whole-cell patch-clamp recordings revealed a similar increase in input resistance in neurons from the hippocampus and EC. However, the resting membrane potential was increased in the EC neurons only. The recordings of field postsynaptic potentials (fPSPs) in the CA1 hippocampal area showed that both the threshold currents inducing fPSPs and population spikes were lower in hypoxic animals compared to age-matched controls. Using the dosed electroshock paradigm, we found that seizure thresholds were lower in the hypoxic group. Thus, the obtained results suggest that maternal hypoxia during the generation of the pyramidal cortical neurons leads to the increased excitability of neuronal circuitries in the brain of young rats. The increased excitability can be attributed to the changes in intrinsic neuronal properties.

16.
Int J Mol Sci ; 23(5)2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35269897

RESUMEN

Preventing epileptogenesis in people at risk is an unmet medical need. Metabotropic glutamate receptors (mGluRs) are promising targets for such therapy. However, drugs acting on mGluRs are not used in the clinic due to limited knowledge of the involvement of mGluRs in epileptogenesis. This study aimed to analyze the changes in gene expression of mGluR subtypes (1-5, 7, 8) in various rat brain regions in the latent and chronic phases of a lithium-pilocarpine model of epilepsy. For this study, multiplex test systems were selected and optimized to analyze mGluR gene expression using RT-qPCR. Region- and phase-specific changes in expression were revealed. During the latent phase, mGluR5 mRNA levels were increased in the dorsal and ventral hippocampus, and expression of group III genes was decreased in the hippocampus and temporal cortex, which could contribute to epileptogenesis. Most of the changes in expression detected in the latent stage were absent in the chronic stage, but mGluR8 mRNA production remained reduced in the hippocampus. Moreover, we found that gene expression of group II mGluRs was altered only in the chronic phase. The study deepened our understanding of the mechanisms of epileptogenesis and suggested that agonists of group III mGluRs are the most promising targets for preventing epilepsy.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Animales , Encéfalo/metabolismo , Epilepsia/metabolismo , Epilepsia del Lóbulo Temporal/inducido químicamente , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/metabolismo , Expresión Génica , Hipocampo/metabolismo , Humanos , Litio/farmacología , Pilocarpina , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas
17.
Int J Mol Sci ; 23(1)2022 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-35008924

RESUMEN

Metabotropic glutamate receptors (mGluRs) are expressed predominantly on neurons and glial cells and are involved in the modulation of a wide range of signal transduction cascades. Therefore, different subtypes of mGluRs are considered a promising target for the treatment of various brain diseases. Previous studies have demonstrated the seizure-induced upregulation of mGluR5; however, its functional significance is still unclear. In the present study, we aimed to clarify the effect of treatment with the selective mGluR5 antagonist 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine (MTEP) on epileptogenesis and behavioral impairments in rats using the lithium-pilocarpine model. We found that the administration of MTEP during the latent phase of the model did not improve survival, prevent the development of epilepsy, or attenuate its manifestations in rats. However, MTEP treatment completely prevented neuronal loss and partially attenuated astrogliosis in the hippocampus. An increase in excitatory amino acid transporter 2 expression, which has been detected in treated rats, may prevent excitotoxicity and be a potential mechanism of neuroprotection. We also found that MTEP administration did not prevent the behavioral comorbidities such as depressive-like behavior, motor hyperactivity, reduction of exploratory behavior, and cognitive impairments typical in the lithium-pilocarpine model. Thus, despite the distinct neuroprotective effect, the MTEP treatment was ineffective in preventing epilepsy.


Asunto(s)
Epilepsia/metabolismo , Hipocampo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Piridinas/farmacología , Convulsiones , Tiazoles/farmacología , Animales , Conducta Animal , Modelos Animales de Enfermedad , Litio , Masculino , Neuronas/efectos de los fármacos , Pilocarpina , Ratas , Ratas Wistar , Receptor del Glutamato Metabotropico 5/antagonistas & inhibidores
18.
PLoS Comput Biol ; 18(1): e1009782, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35041661

RESUMEN

The mechanisms determining ictal discharge (ID) propagation are still not clear. In the present study, we aimed to examine these mechanisms in animal and mathematical models of epileptiform activity. Using double-patch and extracellular potassium ion concentration recordings in rat hippocampal-cortical slices, we observed that IDs moved at a speed of about 1 mm/s or less. The mechanisms of such slow propagation have been studied with a mathematical, conductance-based refractory density (CBRD) model that describes the GABA- and glutamatergic neuronal populations' interactions and ion dynamics in brain tissue. The modeling study reveals two main factors triggerring IDs: (i) increased interneuronal activity leading to chloride ion accumulation and a consequent depolarizing GABAergic effect and (ii) the elevation of extracellular potassium ion concentration. The local synaptic transmission followed by local potassium ion extrusion and GABA receptor-mediated chloride ion accumulation underlies the ID wavefront's propagation. In contrast, potassium ion diffusion in the extracellular space is slower and does not affect ID's speed. The short discharges, constituting the ID, propagate much faster than the ID front. The accumulation of sodium ions inside neurons due to their hyperactivity and glutamatergic currents boosts the Na+/K+ pump, which terminates the ID. Knowledge of the mechanism of ID generation and propagation contributes to the development of new treatments against epilepsy.


Asunto(s)
Hipocampo , Modelos Neurológicos , Convulsiones , Animales , Biología Computacional , Epilepsia/metabolismo , Epilepsia/fisiopatología , Hipocampo/metabolismo , Hipocampo/fisiología , Masculino , Potasio/metabolismo , Ratas , Ratas Wistar , Convulsiones/metabolismo , Convulsiones/fisiopatología
19.
Cells ; 12(1)2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36611852

RESUMEN

Maternal hyperhomocysteinemia (HCY) is a common pregnancy complication caused by high levels of the homocysteine in maternal and fetal blood, which leads to the alterations of the cognitive functions, including learning and memory. In the present study, we investigated the mechanisms of these alterations in a rat model of maternal HCY. The behavioral tests confirmed the memory impairments in young and adult rats following the prenatal HCY exposure. Field potential recordings in hippocampal slices demonstrated that the long-term potentiation (LTP) was significantly reduced in HCY rats. The whole-cell patch-clamp recordings in hippocampal slices demonstrated that the magnitude of NMDA receptor-mediated currents did not change while their desensitization decreased in HCY rats. No significant alterations of glutamate receptor subunit expression except GluN1 were detected in the hippocampus of HCY rats using the quantitative real-time PCR and Western blot methods. The immunofluorescence microscopy revealed that the number of synaptopodin-positive spines is reduced, while the analysis of the ultrastructure of hippocampus using the electron microscopy revealed the indications of delayed hippocampal maturation in young HCY rats. Thus, the obtained results suggest that maternal HCY disturbs the maturation of hippocampus during the first month of life, which disrupts LTP formation and causes memory impairments.


Asunto(s)
Hiperhomocisteinemia , Femenino , Embarazo , Ratas , Animales , Hiperhomocisteinemia/complicaciones , Hiperhomocisteinemia/metabolismo , Plasticidad Neuronal , Potenciación a Largo Plazo , Hipocampo/metabolismo , Trastornos de la Memoria/etiología , Trastornos de la Memoria/metabolismo
20.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36613660

RESUMEN

Low-frequency electrical stimulation is used to treat some drug-resistant forms of epilepsy. Despite the effectiveness of the method in suppressing seizures, there is a considerable risk of side effects. An optogenetic approach allows the targeting of specific populations of neurons, which can increase the effectiveness and safety of low-frequency stimulation. In our study, we tested the efficacy of the suppression of ictal activity in entorhinal cortex slices in a 4-aminopyridine model with three variants of low-frequency light stimulation (LFLS): (1) activation of excitatory and inhibitory neurons (on Thy1-ChR2-YFP mice), (2) activation of inhibitory interneurons only (on PV-Cre mice after virus injection with channelrhodopsin2 gene), and (3) hyperpolarization of excitatory neurons (on Wistar rats after virus injection with archaerhodopsin gene). Only in the first variant did simultaneous LFLS of excitatory and inhibitory neurons replace ictal activity with interictal activity. We suggest that LFLS caused changes in the concentration gradients of K+ and Na+ cations across the neuron membrane, which activated Na-K pumping. According to the mathematical modeling, the increase in Na-K pump activity in neurons induced by LFLS led to an antiepileptic effect. Thus, a less specific and generalized optogenetic effect on entorhinal cortex neurons was more effective in suppressing ictal activity in the 4-aminopyridine model.


Asunto(s)
Corteza Entorrinal , Interneuronas , Animales , Ratones , Ratas , 4-Aminopiridina/farmacología , Corteza Entorrinal/metabolismo , Interneuronas/metabolismo , Optogenética , Parvalbúminas/genética , Parvalbúminas/metabolismo , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...