Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Langmuir ; 39(51): 18995-19007, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38096496

RESUMEN

Phosphatidylserine (PS) exposure on the plasma membrane is crucial for many cellular processes including apoptotic cell recognition, blood clotting regulation, cellular signaling, and intercellular interactions. In this study, we investigated the arrangement of PS headgroups in mixed PS/phosphatidylcholine (PC) bilayers, serving as a simplified model of the outer leaflets of mammalian cell plasma membranes. Combining atomistic-scale molecular dynamics (MD) simulations with Langmuir monolayer experiments, we unraveled the mutual miscibility of POPC and POPS lipids and the intricate intermolecular interactions inherent to these membranes as well as the disparities in position and orientation of PC and PS headgroups. Our experiments revealed micrometer-scale miscibility at all mole fractions of POPC and POPS, marked by modest deviations from ideal mixing with no apparent microscale phase separation. The MD simulations, meanwhile, demonstrated that these deviations were due to strong electrostatic interactions between like-lipid pairs (POPC-POPC and POPS-POPS), culminating in lateral segregation and nanoscale clustering. Notably, PS headgroups profoundly affect the ordering of the lipid acyl chains, leading to lipid elongation and subtle PS protrusion above the zwitterionic membrane. In addition, PC headgroups are more tilted with respect to the membrane normal, while PS headgroups align at a smaller angle, making them more exposed to the surface of the mixed PC/PS membranes. These findings provide a detailed molecular-level account of the organization of mixed PC/PS membranes, corroborated by experimental data. The insights gained here extend our comprehension of the physiological role of PSs.


Asunto(s)
Membrana Dobles de Lípidos , Fosfatidilcolinas , Membrana Dobles de Lípidos/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidilserinas/metabolismo , Membranas Artificiales , Membrana Celular/metabolismo
2.
Sci Rep ; 13(1): 7648, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37169794

RESUMEN

It was recently demonstrated that newly invented positronium imaging may be used for improving cancer diagnostics by providing additional information about tissue pathology with respect to the standardized uptake value currently available in positron emission tomography (PET). Positronium imaging utilizes the properties of positronium atoms, which are built from the electrons and positrons produced in the body during PET examinations. We hypothesized that positronium imaging would be sensitive to the in vitro discrimination of tumor-like three-dimensional structures (spheroids) built of melanoma cell lines with different cancer activities and biological properties. The lifetime of ortho-positronium (o-Ps) was evaluated in melanoma spheroids from two cell lines (WM266-4 and WM115) differing in the stage of malignancy. Additionally, we considered parameters such as the cell number, spheroid size and melanoma malignancy to evaluate their relationship with the o-Ps lifetime. We demonstrate pilot results for o-Ps lifetime measurement in extracellular matrix-free spheroids. With the statistical significance of two standard deviations, we demonstrated that the higher the degree of malignancy and the rate of proliferation of neoplastic cells, the shorter the lifetime of ortho-positronium. In particular, we observed the following indications encouraging further research: (i) WM266-4 spheroids characterized by a higher proliferation rate and malignancy showed a shorter o-Ps lifetime than WM115 spheroids characterized by a lower growth rate. (ii) Both cell lines showed a decrease in the lifetime of o-Ps after spheroid generation on day 8 compared to day 4 in culture, and the mean o-Ps lifetime was longer for spheroids formed from WM115 cells than for those formed from WM266-4 cells, regardless of spheroid age. The results of this study revealed that positronium is a promising biomarker that may be applied in PET diagnostics for the assessment of the degree of cancer malignancy.


Asunto(s)
Melanoma , Tomografía Computarizada por Rayos X , Humanos , Melanoma/patología , Biomarcadores , Tomografía de Emisión de Positrones , Esferoides Celulares/metabolismo
3.
Membranes (Basel) ; 13(4)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37103838

RESUMEN

The miscibility of phospholipids in a hydrated bilayer is an issue of fundamental importance for understanding the organization of biological membranes. Despite research on lipid miscibility, its molecular basis remains poorly understood. In this study, all-atom MD simulations complemented by Langmuir monolayer and DSC experiments have been performed to investigate the molecular organization and properties of lipid bilayers composed of phosphatidylcholines with saturated (palmitoyl, DPPC) and unsaturated (oleoyl, DOPC) acyl chains. The experimental results showed that the DOPC/DPPC bilayers are systems exhibiting a very limited miscibility (strongly positive values of excess free energy of mixing) at temperatures below the DPPC phase transition. The excess free energy of mixing is divided into an entropic component, related to the ordering of the acyl chains, and an enthalpic component, resulting from the mainly electrostatic interactions between the headgroups of lipids. MD simulations showed that the electrostatic interactions for lipid like-pairs are much stronger than that for mixed pairs and temperature has only a slight influence on these interactions. On the contrary, the entropic component increases strongly with increasing temperature, due to the freeing of rotation of acyl chains. Therefore, the miscibility of phospholipids with different saturations of acyl chains is an entropy-driven process.

4.
Carbohydr Polym ; 297: 119999, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36184131

RESUMEN

Hydrophobically modified chondroitin sulfate (CS) is widely used in the preparation of nano-sized drug delivery systems. Herein, the behavior of amphiphilic CSs in aqueous media and the drug accumulation inside the formed micelle-like structures were studied using experimental methods and molecular dynamics simulations. In particular, we focused on the impact of the degree of substitution (DS) with hydrophobic groups and the presence of drug on the morphology of the nanostructures and their molecular organization. Our results show that with increasing DS, the morphology of the amphiphilic CS nanostructures changes from irregular, loosely packed nanogels to cylindrical micelles with a core-shell architecture. These structures can efficiently accumulate hydrophobic drugs. However, the drug molecules preferentially locate at the interface between the hydrophobic part and the hydrophilic corona formed by the CS chains. Our work provides detailed information that may be relevant to the development of amphiphilic polysaccharide-based drug delivery systems.


Asunto(s)
Sulfatos de Condroitina , Micelas , Sulfatos de Condroitina/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Interacciones Hidrofóbicas e Hidrofílicas , Nanogeles , Agua
5.
Langmuir ; 36(42): 12435-12450, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33058724

RESUMEN

Natural or synthetic polycations are used as biocides or as drug/gene carriers. Understanding the interactions between these macromolecules and cell membranes at the molecular level is therefore of great importance for the design of effective polymer biocides or biocompatible polycation-based delivery systems. Until now, details of the processes at the interface between polycations and biological systems have not been fully recognized. In this study, we consider the effect of strong polycations with quaternary ammonium groups on the properties of anionic lipid membranes that we use as a model system for protein-free cell membranes. For this purpose, we employed experimental measurements and atomic-scale molecular dynamics (MD) simulations. MD simulations reveal that the polycations are strongly hydrated in the aqueous phase and do not lose the water shell after adsorption at the bilayer surface. As a result of strong hydration, the polymer chains reside at the phospholipid headgroup and do not penetrate to the acyl chain region. The polycation adsorption involves the formation of anionic lipid-rich domains, and the density of anionic lipids in these domains depends on the length of the polycation chain. We observed the accumulation of anionic lipids only in the leaflet interacting with the polymer, which leads to the formation of compositionally asymmetric domains. Asymmetric adsorption of the polycation on only one leaflet of the anionic membrane strongly affects the membrane properties in the polycation-membrane contact areas: (i) anionic lipid accumulates in the region near the adsorbed polymer, (ii) acyl chain ordering and lipid packing are reduced, which results in a decrease in the thickness of the bilayer, and (iii) polycation-anionic membrane interactions are strongly influenced by the presence and concentration of salt. Our results provide an atomic-scale description of the interactions of polycations with anionic lipid bilayers and are fully supported by the experimental data. The outcomes are important for understanding the correlation of the structure of polycations with their activity on biomembranes.

6.
ACS Chem Neurosci ; 11(13): 1914-1924, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32538079

RESUMEN

Synaptic neurotransmission has recently been proposed to function via either a membrane-independent or a membrane-dependent mechanism, depending on the neurotransmitter type. In the membrane-dependent mechanism, amphipathic neurotransmitters first partition to the lipid headgroup region and then diffuse along the membrane plane to their membrane-buried receptors. However, to date, this mechanism has not been demonstrated for any neurotransmitter-receptor complex. Here, we combined isothermal calorimetry measurements with a diverse set of molecular dynamics simulation methods to investigate the partitioning of an amphipathic neurotransmitter (dopamine) and the mechanism of its entry into the ligand-binding site. Our results show that the binding of dopamine to its receptor is consistent with the membrane-dependent binding and entry mechanism. Both experimental and simulation results showed that dopamine favors binding to lipid membranes especially in the headgroup region. Moreover, our simulations revealed a ligand-entry pathway from the membrane to the binding site. This pathway passes through a lateral gate between transmembrane alpha-helices 5 and 6 on the membrane-facing side of the protein. All in all, our results demonstrate that dopamine binds to its receptor by a membrane-dependent mechanism, and this is complemented by the more traditional binding mechanism directly through the aqueous phase. The results suggest that the membrane-dependent mechanism is common in other synaptic receptors, too.


Asunto(s)
Dopamina , Simulación de Dinámica Molecular , Sitios de Unión , Membrana Celular/metabolismo , Dopamina/metabolismo , Membrana Dobles de Lípidos/metabolismo , Unión Proteica , Transmisión Sináptica
7.
J Phys Chem B ; 124(11): 2139-2148, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32101005

RESUMEN

Cholesterol plays a crucial role in modulating the physicochemical properties of biomembranes, both increasing mechanical strength and decreasing permeability. Cholesterol is also a common component of vesicle-based delivery systems, including liposome-based drug delivery systems (LDSs). However, its effect on the partitioning of drug molecules to lipid membranes is very poorly recognized. Herein, we performed a combined experimental/computational study of the potential for the use of the LDS formulation for the delivery of the antifungal drug itraconazole (ITZ). We consider the addition of cholesterol to the lipid membrane. Since ITZ is only weakly soluble in water, its bioavailability is limited. Use of an LDS has thus been proposed. We studied lipid membranes composed of cholesterol, 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (POPC), and ITZ using a combination of computational molecular dynamics (MD) simulations of lipid bilayers and Brewster angle microscopy (BAM) experiments of monolayers. Both experimental and computational results show separation of cholesterol and ITZ. Cholesterol has a strong preference to orient parallel to the bilayer normal. However, ITZ, a long and relatively rigid molecule with weakly hydrophilic groups along the backbone, predominantly locates below the interface between the hydrocarbon chain region and the polar region of the membrane, with its backbone oriented parallel to the membrane surface; the orthogonal orientation in the membrane could be the cause of the observed separation. In addition, fluorescence measurements demonstrated that the affinity of ITZ for the lipid membrane is decreased by the presence of cholesterol, which is thus probably not a suitable formulation component of an LDS designed for ITZ delivery.


Asunto(s)
Itraconazol , Membrana Dobles de Lípidos , Antifúngicos , Colesterol , Glicerol/análogos & derivados , Fosfatidilcolinas , Fosforilcolina/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...