Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 483(7387): 53-8, 2012 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-22327295

RESUMEN

Neisseria are obligate human pathogens causing bacterial meningitis, septicaemia and gonorrhoea. Neisseria require iron for survival and can extract it directly from human transferrin for transport across the outer membrane. The transport system consists of TbpA, an integral outer membrane protein, and TbpB, a co-receptor attached to the cell surface; both proteins are potentially important vaccine and therapeutic targets. Two key questions driving Neisseria research are how human transferrin is specifically targeted, and how the bacteria liberate iron from transferrin at neutral pH. To address these questions, we solved crystal structures of the TbpA-transferrin complex and of the corresponding co-receptor TbpB. We characterized the TbpB-transferrin complex by small-angle X-ray scattering and the TbpA-TbpB-transferrin complex by electron microscopy. Our studies provide a rational basis for the specificity of TbpA for human transferrin, show how TbpA promotes iron release from transferrin, and elucidate how TbpB facilitates this process.


Asunto(s)
Proteínas Bacterianas/química , Hierro/metabolismo , Neisseria/metabolismo , Proteína A de Unión a Transferrina/química , Proteína A de Unión a Transferrina/metabolismo , Proteína B de Unión a Transferrina/química , Proteína B de Unión a Transferrina/metabolismo , Animales , Apoproteínas/química , Apoproteínas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Transporte Biológico , Bovinos , Cristalografía por Rayos X , Humanos , Ratones , Modelos Moleculares , Simulación de Dinámica Molecular , Neisseria/patogenicidad , Conformación Proteica , Dispersión del Ángulo Pequeño , Especificidad de la Especie , Relación Estructura-Actividad , Transferrina/química , Transferrina/metabolismo , Transferrina/ultraestructura , Proteína A de Unión a Transferrina/ultraestructura , Proteína B de Unión a Transferrina/ultraestructura , Difracción de Rayos X
2.
J Mol Biol ; 355(5): 1048-65, 2006 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-16343539

RESUMEN

The outcome of three-dimensional (3D) reconstructions in single particle electron microscopy (EM) depends on a number of parameters. We have used the well-characterized structure of the transferrin (Tf)-transferrin receptor (TfR) complex to study how specimen preparation techniques influence the outcome of single particle EM reconstructions. The Tf-TfR complex is small (290kDa) and of low symmetry (2-fold). Angular reconstitution from images of vitrified specimens does not reliably converge on the correct structure. Random conical tilt reconstructions from negatively stained specimens are reliable, but show variable degrees of artifacts depending on the negative staining protocol. Alignment of class averages from vitrified specimens to a 3D negative stain reference model using FREALIGN largely eliminated artifacts in the resulting 3D maps, but not completely. Our results stress the need for critical evaluation of structures determined by single particle EM.


Asunto(s)
Imagenología Tridimensional , Conformación Proteica , Receptores de Transferrina/química , Coloración y Etiquetado/métodos , Transferrina/química , Carbono/química , Glucosa/química , Glicerol/química , Humanos , Microscopía Electrónica/métodos , Modelos Moleculares , Molibdeno/química , Compuestos Organometálicos/química , Receptores de Transferrina/ultraestructura , Programas Informáticos , Transferrina/ultraestructura
3.
J Struct Biol ; 152(3): 204-10, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16343946

RESUMEN

Most organisms depend on iron as a co-factor for proteins catalyzing redox reactions. Iron is, however, a difficult element for cells to deal with, as it is insoluble in its ferric (Fe3+) form and potentially toxic in its ferrous (Fe2+) form. Thus, in vertebrates iron is transported through the circulation bound to transferrin (Tf) and delivered to cells through an endocytotic cycle involving the transferrin receptor (TfR). We have previously presented a model for the Tf-TfR complex in its iron-bearing form, the diferric transferrin (dTf)-TfR complex [Cheng, Y., Zak, O., Aisen, P., Harrison, S.C., Walz, T., 2004. Structure of the human transferrin receptor-transferrin complex. Cell 116, 565-576]. We have now calculated a single particle reconstruction for the complex in its iron-free form, the apo-transferrin (apoTf)-TfR complex. The same density map was obtained by aligning raw particle images or class averages of the vitrified apoTf-TfR complex to reference models derived from the structures of the dTf-TfR or apoTf-TfR complex. We were unable to improve the resolution of the apoTf-TfR density map beyond 16A, most likely because of significant structural variability of Tf in its iron-free state. The density map does, however, support the model for the apoTf-TfR we previously proposed based on the dTf-TfR complex structure, and it suggests that receptor-bound apoTf prefers to adopt an open conformation.


Asunto(s)
Apoproteínas/ultraestructura , Microscopía por Crioelectrón , Imagenología Tridimensional , Receptores de Transferrina/ultraestructura , Transferrina/ultraestructura , Apoproteínas/química , Apoproteínas/metabolismo , Humanos , Modelos Moleculares , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/ultraestructura , Unión Proteica , Receptores de Transferrina/química , Receptores de Transferrina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Transferrina/química , Transferrina/metabolismo
4.
Mol Cell Proteomics ; 4(12): 1959-67, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16332734

RESUMEN

The structural allostery and binding interface for the human serum transferrin (Tf)*transferrin receptor (TfR) complex were identified using radiolytic footprinting and mass spectrometry. We have determined previously that the transferrin C-lobe binds to the receptor helical domain. In this study we examined the binding interactions of full-length transferrin with receptor and compared these data with a model of the complex derived from cryoelectron microscopy (cryo-EM) reconstructions (Cheng, Y., Zak, O., Aisen, P., Harrison, S. C. & Walz, T. (2004) Structure of the human transferrin receptor.transferrin complex. Cell 116, 565-576). The footprinting results provide the following novel conclusions. First, we report characteristic oxidations of acidic residues in the C-lobe of native Tf and basic residues in the helical domain of TfR that were suppressed as a function of complex formation; this confirms ionic interactions between these protein segments as predicted by cryo-EM data and demonstrates a novel method for detecting ion pair interactions in the formation of macromolecular complexes. Second, the specific side-chain interactions between the C-lobe and N-lobe of transferrin and the corresponding interactions sites on the transferrin receptor predicted from cryo-EM were confirmed in solution. Last, the footprinting data revealed allosteric movements of the iron binding C- and N-lobes of Tf that sequester iron as a function of complex formation; these structural changes promote tighter binding of the metal ion and facilitate efficient ion transport during endocytosis.


Asunto(s)
Receptores de Transferrina/química , Receptores de Transferrina/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Sitios de Unión , Microscopía por Crioelectrón , Humanos , Hierro/metabolismo , Espectrometría de Masas , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Receptores de Transferrina/ultraestructura
5.
Cell ; 116(4): 565-76, 2004 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-14980223

RESUMEN

Iron, insoluble as free Fe(3+) and toxic as free Fe(2+), is distributed through the body as Fe(3+) bound to transferrin (Tf) for delivery to cells by endocytosis of its complex with transferrin receptor (TfR). Although much is understood of the transferrin endocytotic cycle, little has been uncovered of the molecular details underlying the formation of the receptor-transferrin complex. Using cryo-electron microscopy, we have produced a density map of the TfR-Tf complex at subnanometer resolution. An atomic model, obtained by fitting crystal structures of diferric Tf and the receptor ectodomain into the map, shows that the Tf N-lobe is sandwiched between the membrane and the TfR ectodomain and that the C-lobe abuts the receptor helical domain. When Tf binds receptor, its N-lobe moves by about 9 A with respect to its C-lobe. The structure of TfR-Tf complex helps account for known differences in the iron-release properties of free and receptor bound Tf.


Asunto(s)
Receptores de Transferrina/química , Transferrina/química , Animales , Células CHO , Cricetinae , Microscopía por Crioelectrón , Electrones , Humanos , Procesamiento de Imagen Asistido por Computador , Hierro/química , Hierro/metabolismo , Microscopía Electrónica , Modelos Moleculares , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Factores de Tiempo
6.
Biochemistry ; 43(1): 205-9, 2004 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-14705946

RESUMEN

Virtually all organisms require iron, and iron-dependent cells of vertebrates (and some more ancient species) depend on the Fe(3+)-binding protein of the circulation, transferrin, to meet their needs. In its iron-donating cycle, transferrin is first captured by the transferrin receptor on the cell membrane, and then internalized to a proton-pumping endosome where iron is released. Iron exits the endosome to enter the cytoplasm via the ferrous iron transporter DMT1, a molecule that accepts only Fe(2+), but the reduction potential of ferric iron in free transferrin at endosomal pH (approximately 5.6) is below -500 mV, too low for reduction by physiological agents such as the reduced pyridine nucleotides with reduction potentials of -284 mV. We now show that in its complex with the transferrin receptor, which persists throughout the transferrin-to-cell cycle of iron uptake, the potential is raised by more than 200 mV. Reductive release of iron from transferrin, which binds Fe(2+) very weakly, is therefore physiologically feasible, a further indication that the transferrin receptor is more than a passive conveyor of transferrin and its iron.


Asunto(s)
Receptores de Transferrina/química , Receptores de Transferrina/metabolismo , Transferrina/química , Transferrina/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Compuestos Férricos/química , Compuestos Férricos/metabolismo , Compuestos Ferrosos/química , Compuestos Ferrosos/metabolismo , Humanos , Cinética , Oxidación-Reducción , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Unión Proteica , Receptores de Transferrina/fisiología , Termodinámica
7.
Int J Biochem Cell Biol ; 36(2): 340-52, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14643898

RESUMEN

To secure iron from transferrin, hepatocytes use two pathways, one dependent on transferrin receptor (TfR 1) and the other, of greater capacity but lower affinity, independent of TfR 1. To clarify further similarities and differences of the two pathways, we have suppressed TfR 1 by 75-80% in human hepatoma-derived HuH-7 cells co-transfected with vectors bearing full-length TfR 1 cDNA or its first 100 bases in antisense orientation. Suppression of TfR 1 does not lead to down regulation of TfR 2, a recently described second transferrin receptor of as yet uncertain function. Both pathways depend on acidification of the compartments in which iron release from transferrin takes place. Recycling of transferrin is a feature of both pathways, but is substantially more efficient in the receptor-dependent route. Degradation of transferrin occurs only in the receptor-independent route, in the first example of a specific catabolic pathway of transferrin. Linkage of cellular iron uptake to release of the synergistic anion (without which iron is not bound by transferrin) is particularly evident in the receptor-independent pathway. Although the relative importance of the two pathways in normal and deranged hepatic iron metabolism remains to be determined, the receptor-independent route is a substantial accessory for iron uptake to the better-known receptor-dependent track.


Asunto(s)
Hierro/farmacocinética , Transferrina/química , Aniones , Western Blotting , Brefeldino A/farmacología , Línea Celular Tumoral , ADN Complementario/metabolismo , Inhibidores Enzimáticos/farmacología , Hepatocitos/metabolismo , Humanos , Macrólidos/farmacología , Mutagénesis , Oligonucleótidos Antisentido/farmacología , Unión Proteica , Inhibidores de la Síntesis de la Proteína/farmacología , ARN sin Sentido/metabolismo , Temperatura , Factores de Tiempo , Transfección , Transferrina/metabolismo
8.
PLoS Biol ; 1(3): E51, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14691533

RESUMEN

Transferrin receptor 1 (TfR) plays a critical role in cellular iron import for most higher organisms. Cell surface TfR binds to circulating iron-loaded transferrin (Fe-Tf) and transports it to acidic endosomes, where low pH promotes iron to dissociate from transferrin (Tf) in a TfR-assisted process. The iron-free form of Tf (apo-Tf) remains bound to TfR and is recycled to the cell surface, where the complex dissociates upon exposure to the slightly basic pH of the blood. Fe-Tf competes for binding to TfR with HFE, the protein mutated in the iron-overload disease hereditary hemochromatosis. We used a quantitative surface plasmon resonance assay to determine the binding affinities of an extensive set of site-directed TfR mutants to HFE and Fe-Tf at pH 7.4 and to apo-Tf at pH 6.3. These results confirm the previous finding that Fe-Tf and HFE compete for the receptor by binding to an overlapping site on the TfR helical domain. Spatially distant mutations in the TfR protease-like domain affect binding of Fe-Tf, but not iron-loaded Tf C-lobe, apo-Tf, or HFE, and mutations at the edge of the TfR helical domain affect binding of apo-Tf, but not Fe-Tf or HFE. The binding data presented here reveal the binding footprints on TfR for Fe-Tf and apo-Tf. These data support a model in which the Tf C-lobe contacts the TfR helical domain and the Tf N-lobe contacts the base of the TfR protease-like domain. The differential effects of some TfR mutations on binding to Fe-Tf and apo-Tf suggest differences in the contact points between TfR and the two forms of Tf that could be caused by pH-dependent conformational changes in Tf, TfR, or both. From these data, we propose a structure-based model for the mechanism of TfR-assisted iron release from Fe-Tf.


Asunto(s)
Mutación , Receptores de Transferrina/química , Receptores de Transferrina/genética , Sitios de Unión , Epítopos/química , Biblioteca de Genes , Hemocromatosis/metabolismo , Proteína de la Hemocromatosis , Antígenos de Histocompatibilidad Clase I/química , Humanos , Concentración de Iones de Hidrógeno , Hierro/metabolismo , Ligandos , Proteínas de la Membrana/química , Modelos Químicos , Datos de Secuencia Molecular , Mutagénesis , Mutagénesis Sitio-Dirigida , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Receptores de Transferrina/metabolismo , Análisis de Regresión , Resonancia por Plasmón de Superficie , Termodinámica , Transferrina/química
9.
Biochemistry ; 42(42): 12330-4, 2003 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-14567694

RESUMEN

Human transferrin, like other members of the transferrin class of iron-binding proteins, is a bilobal structure, the product of duplication and fusion of an ancestral gene during the course of biochemical evolution. Although the two lobes exhibit 45% sequence identity and identical ligand structures of their iron-binding sites (one in each lobe), they differ in their iron-binding properties and their responsiveness to complex formation with the transferrin receptor. A variety of interlobe interactions modulating these iron-binding functions has been described. We have now studied the kinetics of iron release to pyrophosphate from the isolated recombinant C-lobe and from that lobe in the intact protein, each free and bound to receptor. The striking finding is that the rates of iron release at the pH of the endosome to which transferrin is internalized by the iron-dependent cell are similar in the free proteins but 18 times faster from full-length monoferric transferrin selectively loaded with iron in the C-lobe than from isolated C-lobe when each is complexed to the receptor. The possibility that the faster release in the receptor complex of the full-length protein at endosomal pH contributes to the evolutionary advantage of the bilobal structure is considered.


Asunto(s)
Endosomas/metabolismo , Concentración de Iones de Hidrógeno , Hierro/metabolismo , Receptores de Transferrina/metabolismo , Transferrina/metabolismo , Humanos , Transferrina/química
10.
Biochemistry ; 42(43): 12447-54, 2003 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-14580189

RESUMEN

Human transferrin, a bilobal protein, with each lobe bearing a single iron-binding site, functions to transport iron into cells. While the N-terminal lobe alone does not measurably bind cellular transferrin receptors or serve as an iron donor for cells, the C-lobe is capable of both functions. We used hydroxyl radical-mediated protein footprinting and mass spectrometry to reveal the conformational changes that occur upon complex formation for the human transferrin C-lobe (residues 334-679) bound to the ectodomain of human transferrin receptor 1 (residues 121-760). Oxidation rates for proteolytic peptides in the C-lobe, the receptor, and their complex have been measured by mass spectrometry; upon formation of the complex, a dramatic decrease in modification rates, indicating protection of specific side chain groups, can be seen in C-lobe sequences corresponding to residues 381-401, 415-433, and 457-470. Peptide sequences experiencing modification rate decreases in the transferrin receptor upon C-lobe binding include residues 232-240, 365-371, 496-508, 580 and 581, 614-623, 634-646, 647-681, and 733-760. In addition, several peptides in the receptor exhibit enhancements in the rate of modification consistent with allosteric effects of complex formation. Using tandem mass spectrometry, the sites of modification with altered reactivity in the complex include Met382, Met389, Trp460, Met464, and Phe427 in the C-lobe and Tyr503, Pro581, Tyr611, Leu619, Met635, Phe650, Trp740, Trp754, and Phe760 within the transferrin receptor. Using available genetic, biochemical, and structural data, we confirm that the conserved RGD sequence (residues 646-648) in the helical domain of the transferrin receptor, including residues from Leu619 to Phe650, is a primary binding site for the transferrin C-lobe.


Asunto(s)
Receptores de Transferrina/química , Transferrina/química , Secuencia de Aminoácidos , Cromatografía Líquida de Alta Presión , Humanos , Espectrometría de Masas , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Receptores de Transferrina/metabolismo , Transferrina/metabolismo
11.
Protein Expr Purif ; 28(1): 120-4, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12651115

RESUMEN

Human serum transferrin is an essential bilobal protein that transports iron in the circulation for delivery to iron-requiring cells. Obtaining the C-terminal lobe of human transferrin in verified native conformation has been problematic, possibly because its 11 disulfide bonds lead to misfolding when the lobe is expressed without its accompanying N-lobe. A recently reported method for preparing the C-lobe free of extraneous residues, with normal iron-binding properties and capable of delivering iron to cells, makes use of a Factor Xa cleavage site inserted into the interlobal connecting strand of the full-length protein. An inefficient step in this method requires the use of ConA chromatography to separate the cleaved lobes from each other, since only the C-lobe is glycosylated. Inserting a 6-His sequence near the start of the N-lobe enhances recovery of the recombinant transferrin from other proteins in the culture medium of the BHK21 cells expressing the mutant transferrin. The new procedure is more economical in time and effort than its predecessor, and offers the additional advantage of isolating C-lobe expressed with or without its glycan chains.


Asunto(s)
Histidina/metabolismo , Transferrina/química , Transferrina/aislamiento & purificación , Western Blotting , Espectroscopía de Resonancia por Spin del Electrón , Electroforesis en Gel de Poliacrilamida , Humanos , Cinética , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Transferrina/metabolismo , Proteínas de Unión a Transferrina/metabolismo
12.
Biochemistry ; 41(23): 7416-23, 2002 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-12044175

RESUMEN

A defining feature of all transferrins is the absolute dependence of iron binding on the concomitant binding of a synergistic anion, normally but not necessarily carbonate. Acting as a bridging ligand between iron and protein, it completes the coordination requirements of iron to lock the essential metal in its binding site. To investigate the role of the synergistic anion in the iron-binding and iron-donating properties of human transferrin, a bilobal protein with an iron binding site in each lobe, we have selectively mutated the anion-binding threonine and arginine ligands that form an essential part of the electrostatic and hydrogen-bonding network holding the synergistic anion to the protein. Preservation of either ligand is sufficient to maintain anion binding, and therefore iron binding, in the mutated lobe. Arginine is a stronger ligand than threonine, and its loss weakens carbonate and therefore iron binding, but maintains the ability of nitrilotriacetate to serve as a carbonate surrogate. Replacement of both ligands abolishes anion binding and consequently iron binding in the affected lobe. Loss of anion binding in either lobe results in a monoferric protein binding iron in normal fashion only in the opposite lobe. Both monoferric proteins are capable of transferrin receptor-dependent binding and iron donation to K562 cells, but with diminished receptor occupancy by the protein bearing iron only in the N-lobe.


Asunto(s)
Mutagénesis Sitio-Dirigida/fisiología , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología , Transferrina/química , Transferrina/fisiología , Alanina/genética , Alanina/metabolismo , Aniones/metabolismo , Arginina/genética , Arginina/metabolismo , Sitios de Unión/genética , Ácido Carbónico/metabolismo , Sinergismo Farmacológico , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Hierro/metabolismo , Células K562/metabolismo , Cinética , Ácido Nitrilotriacético/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/fisiología , Proteínas Recombinantes/metabolismo , Serina/genética , Serina/metabolismo , Espectrofotometría , Treonina/genética , Treonina/metabolismo , Transferrina/genética , Transferrina/metabolismo
13.
Biochemistry ; 41(5): 1647-53, 2002 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-11814359

RESUMEN

Eukaryotic transferrins comprise a class of bilobal iron-binding proteins in which each lobe carries a single binding site. Although expression of full-length transferrins and their N-terminal lobes, in wild-type and mutated forms, has been successfully accomplished by several laboratories, expression of C-lobes has been much less satisfactory. A possible explanation of the difficulty is that proper folding of the C-lobe, with its 11 disulfide bonds, depends on prior synthesis and proper folding of the N-lobe. We have therefore developed a new strategy, introducing a specific factor Xa cleavage site in the interlobe-connecting strand to permit separation of the lobes after expression of the full-length protein. The resulting protein was expressed in satisfactory yield, >20 mg/L, and could be easily and completely cleaved to yield two distinguishable fragments representing N- and C-lobes, respectively. Retaining the glycosylation sites, found only in the C-lobe, made it possible to separate the fragments from each other by ConA affinity chromatography. The isolated C-lobe so obtained displayed spectroscopic and kinetic features of the C-lobe in native transferrin and was competent as an iron donor for K562 cells to which it bound in saturable fashion inhibitable by native diferric transferrin. Since the N-lobe by itself will neither bind nor donate iron to cells, the primary receptor-recognition site of transferrin resides in its C-lobe.


Asunto(s)
Fragmentos de Péptidos/química , Fragmentos de Péptidos/aislamiento & purificación , Transferrina/química , Transferrina/aislamiento & purificación , Animales , Bovinos , Línea Celular , Cricetinae , Espectroscopía de Resonancia por Spin del Electrón , Factor Xa/genética , Factor Xa/metabolismo , Humanos , Hidrólisis , Hierro/metabolismo , Células K562/metabolismo , Mutagénesis Sitio-Dirigida , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Unión Proteica/genética , Conformación Proteica , Estructura Terciaria de Proteína/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Transferrina/genética , Transferrina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA