Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ecol ; 31(2): 691-712, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34706125

RESUMEN

Antagonistic interactions among different functional guilds of nematodes have been recognized for quite some time, but the underlying explanatory mechanisms are unclear. We investigated responses of tomato (Solanum lycopersicum) to two functional guilds of nematodes-plant parasite (Meloidogyne javanica) and entomopathogens (Heterorhabditis bacteriophora, Steinernema feltiae below-ground, and S. carpocapsae)-as well as a leaf mining insect (Tuta absoluta) above-ground. Our results indicate that entomopathogenic nematodes (EPNs): (1) reduced root knot nematode (RKN) infestation below-ground, (2) reduced herbivore (T. absoluta) host preference and performance above-ground, and (3) induced overlapping plant defence responses by rapidly activating polyphenol oxidase and guaiacol peroxidase activity in roots, but simultaneously suppressing this activity in above-ground tissues. Concurrently, we investigated potential plant signalling mechanisms underlying these interactions using transcriptome analyses. We found that both entomopathogens and plant parasites triggered immune responses in plant roots with shared gene expression. Secondary metabolite transcripts induced in response to the two nematode functional guilds were generally overlapping and showed an analogous profile of regulation. Likewise, we show that EPNs modulate plant defence against RKN invasion, in part, by suppressing active expression of antioxidant enzymes. Inoculations of roots with EPN triggered an immune response in tomato via upregulated phenylpropanoid metabolism and synthesis of protease inhibitors in plant tissues, which may explain decreased egg laying and developmental performance exhibited by herbivores on EPN-inoculated plants. Furthermore, changes induced in the volatile organic compound-related transcriptome indicated that M. javanica and/or S. carpocapsae inoculation of plants triggered both direct and indirect defences. Our results support the hypothesis that plants "mistake" subterranean EPNs for parasites, and these otherwise beneficial worms activate a battery of plant defences associated with systemic acquired resistance and/or induced systemic resistance with concomitant antagonistic effects on temporally co-occurring subterranean plant pathogenic nematodes and terrestrial herbivores.


Asunto(s)
Parásitos , Solanum lycopersicum , Tylenchoidea , Animales , Herbivoria , Solanum lycopersicum/genética , Raíces de Plantas
2.
J Econ Entomol ; 108(3): 1337-43, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26470262

RESUMEN

Rapid and accurate identification of potentially invasive taxa that may cause high economic losses or environmental damage is of critical importance. The onion thrips, Thrips tabaci Lindeman, ranks as one of the world's most destructive agricultural pests and commonly found in imported agricultural products and field samples, but is prone to undetected transport because of its minute size as well as cryptic behavior. Although traditional taxonomic methods are pretty useful in straightforward assignment of specimens to the genus Thrips, identification in the species level is much more difficult and requires expertise, knowledge, and experience. Furthermore, it is often difficult or impossible to identify or distinguish this species from other thrips by using material from other stages of development. Based on the foregoings, use of a molecular technique known as loop-mediated isothermal amplification (LAMP) as a rapid and robust alternative species diagnostic tool would be valuable. In this study, a relatively quick and simple method was used to detect the presence of onion thrips DNA rapidly and discriminate it from other species, by using material from different stages of development. Not only LAMP itself required less than 1 h to complete but also amounts of DNA as little as that recovered from a single specimen were adequate for the detection. Another advantage of this identification system is that nonspecialists will be able to make faster and cheaper identifications.


Asunto(s)
Control de Insectos/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Thysanoptera/clasificación , Thysanoptera/genética , Animales , Control de Insectos/instrumentación , Proteínas de Insectos/genética , Larva/clasificación , Larva/genética , Larva/crecimiento & desarrollo , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Sensibilidad y Especificidad , Thysanoptera/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA